Multi-Platform Simulation using VecTor Suite of Programs

Vahid Sadeghian

2017 UT-SIM Workshop

- ♦ Introduction to the VecTor suite of programs.
- ♦ **Example 1:** Modelling a shear-critical reinforced concrete beam.
- ♦ Example 2: Modelling beam-column joints substructure module.

Background

□ VecTor Suite of Software

Software	Structure Type	Analysis Procedure	Element Library
VecTor2	2D Membranes	Repaired members with FRP sheets	
VecTor3	3D Solids	Nonlinear fire analysis	
VecTor4	Shells	Out-of-plane shear	
VecTor5	Frames	Com	putationally fast
VecTor6	Axisymmetric Solids	Com	putationally fast

Example 1

Modelling a Shear-Critical RC Beam in VecTor2

⁽Vecchio and Shim, 2004)

Details of OA1 beam tested by Vecchio and Shim (2004)

		Concrete		
f' _c	εο	E _c	f _{sp}	Max Agg. Size
(MPa)	(× 10 ⁻³)	(MPa)	(MPa)	(mm)
22.6	1.6	36,500	2.37	20

			Reinforce	ement			
Bar Size	Diameter (mm)	Area (mm²)	f _y (MPa)	f _u (MPa)	E _s (MPa)	ε _{sh} (× 10 ⁻³)	ε _u (× 10 ⁻³)
25M	25.2	500	445	680	220,000	8.5	216
30M	29.9	700	436	700	200,000	11.4	175

2017 UT-SIM Workshop

Experimentally Reported Results

Load-deflection response

Crack pattern

□ Modelling Steps Overview

Step 1) Define Materials

Concrete Material ; Steel Material ; Bearing Material

♦ Step 2) Create finite element Mesh

Concrete Regions ; Longitudinal Reinforcement ; Constraint Point

- Step 3) Define Support Restraints
- ♦ Step 4) Define Loads
- Step 5) Select Analysis Options

Create Finite Element Mesh

Finite Element Mesh

Comparison of the Results

Load-deflection responses

Crack patterns

Example 2

Modelling Beam-Column Joints Substructure Module in VecTor2

2017 UT-SIM Workshop *13*

□ Step 1) Create Concrete Materials

Material 1: Concrete cover (unconfined concrete)

Define Material Properties		×
Define Material Properties Material Types Type: Material 1 Material 2 Update Delete Reinforcement Components Component: Add	Material Properties Reference Type: Reinforced Concrete Thickness, T: 400 Cylinder Compressive Strength, f'c: 30 MPa MPa Tensile Strength, f't: * Initial Tangent Elastic Modulus, Ec: * Quinder Strain at f'c, eo: * Poisson's Ratio, Mu: * Thermal Expansion Coefficient, Cc: * Maximum Aggregate Size, a: * 0 mm Density: *	Smeared Reinforcement Properties Reference Type: Ductile Steel Reinforcement Fibre Type: Out of Plane Reinforcement: Reinforcement Direction from X-Axis: Reinforcement Direction from X-Axis: Reinforcement Ratio, rho: Reinforcement Diameter, Db: 10 mm Yield Strength, Fy: 400 MPa Ultimate Strength, Fu: 600 MPa Elastic Modulus, Es: 200000 MPa
Update Delete	Thermal Diffusivity, Kc: * 0 mm2/s Maximum Crack Spacing perpendicular to x-reinforcement, Sx: * 350 mm perpendicular to y-reinforcement, Sy: * 350 mm Color	Strain Hardening Strain, esh: 10 me Ultimate Strain, eu: 150 me Thermal Expansion Coefficient, Cs: * 0 /*C Prestrain, Dep: 0 me Unsupported Length Ratio, b/t: 0

□ Step 1) Create Concrete Materials

Material 2: Confined concrete

Material Types	Material Properties	Smeared Reinforcement Properties	
Type:	Reference Type: Reinforced Concrete	Reference Type: Ductile Steel Reinfo	proement
Material 2	Thickness, T: 400 mm	Fibre Type:	
Update	Cylinder Compressive Strength, f'c: 30 MPa	Out of Plane Reinforcement:	7
Delete	Tensile Strength, f't: * 3.28 MPa	Reinforcement Direction from X-Axis:	361 *
	Initial Tangent Elastic Modulus, Ec: * 24647.5 MPa	Reinforcement Ratio, rho:	0.222 %
	Cylinder Strain at I'c, eo: * 0 me	Reinforcement Diameter, Db:	10 0
	Poisson's Ratio, Mu: * 0	Yield Strenath, Fy:	400 M
)-inforcement Components	Thermal Expansion Coefficient, Cc: * 0 /*C	Ultimate Strength, Fu:	[900 M
Component:	Maximum Aggregate Size, a: * 0 mm	Elastic Modulus, Es:	20000 M
Reinforcement 1 Add	Density: * 0 kg/m	3 Strain Hardening Strain cala	200000 ™
Update	Thermal Diffusivity, Kc: * 0 mm2	/s Strain Hardening Strain, esn:	10 "
Delete	perpendicular to x-reinforcement, Sx: * 350 mm	Ultimate Strain, eu:	150 m
	perpendicular to y-reinforcement, Sy: * 350 mm	Thermal Expansion Coefficient, Cs:	* 0 /
		Prestrain, Dep:	0 m
		Unsupported Length Ratio, b/t:	0

□ Step 2) Create Reinforcement Materials

Reinforcement 1: Column longitudinal reinforcements

Reinforcement Type-		Reinforcement Properties	
Type: Reinforcement 1		Reference Type: Ductile Steel Reinfo	rcement 🔹
Reinforcement 2 Reinforcement 3		Cross-Sectional Area:	1200 mm2
Reinforcement 4 Reinforcement 5	Update	Reinforcement Diameter, Db:	20 mm
	Delete	Yield Strength, Fy:	400 MPa
		Ultimate Strength, Fu:	600 MPa
		Elastic Modulus, Es:	200000 MPa
		Strain Hardening Strain, esh:	10 me
		Ultimate Strain, eu:	150 me
		Thermal Expansion Coefficient, Cs:	* 0 /*C
		Prestrain, Dep:	0 me
		Unsupported Length Ratio, b/t:	0
		Color	

□ Step 2) Create Reinforcement Materials

Reinforcement 2: Column longitudinal reinforcements

□ Step 2) Create Reinforcement Materials

Reinforcement 3: Beam longitudinal reinforcements \diamond

OK.

×

 \mathbf{T}

mm2

mm

MPa

MPa

MPa

me

me

7°C

me

Cancel

800

15

400

600

10

150

0

10

200000

□ Step 2) Create Reinforcement Materials

Reinforcement 4: Beam longitudinal reinforcements

	Define Reinforcement Properties		
400 mm	Reinforcement Type	Reinforcement Properties	
(4) - 15M 10M @ 300 mm (4) - 15M (4) - 15M SECTION II - II : BEAM DETAIL	Reinforcement 1 Add Reinforcement 3 Update Reinforcement 4 Delete Delete Image: State Sta	Hererence Type: Ductile Steel Reinforcement Cross-Sectional Area: 400 Reinforcement Diameter, Db: 15 Yield Strength, Fy: 400 Ultimate Strength, Fu: 600 Elastic Modulus, Es: 200000 Strain Hardening Strain, esh: 10 Ultimate Strain, eu: 150 Thermal Expansion Coefficient, Cs: * O 0 Unsupported Length Ratio, b/t: 0	mm2 mm MPa MPa me me /*C me
	Reinforcement material types to be used for	or truss elements only.	Cancel
		2017 UT-SIM Worksh	op

□ Step 2) Create Reinforcement Materials

Reinforcement 5: Transverse reinforcements

□ Step 3) Create Concrete Regions and Truss Bars

□ Step 4) Create FE Mesh and Assign Materials

Interface nodes

□ Step 5) Map Interface Nodes: OpenSees-VecTor2 Integration

□ Step 5) Map Interface Nodes: SFRAME-VecTor2 Integration

Thank You

