Module 1: Experimental Substructure NICON: Network Interface for Controllers

Georgios Giotis

MASc Candidate Department of Civil Engineering University of Toronto

2017 UT-SIM Workshop

Overview

Experimental Substructure – Physical Testing

- ♦ Introduce NICON: Network Interface for Controllers
- Setup Architecture
- Oeveloped NICON versions in UT-SIM

□ Featured Single Degree of Freedom NICON version

- ♦ Introduce LabVIEW
- Featured NICON version: Main functionalities

NICON Demonstration: Small Scale Actuator Replica

- Sonnect with the Data Acquisition System (DAQ)
- Introduction to the Featured NICON environment

Module 1: Experimental Substructure

□ Physical Testing Requirement - Communication

- Methods for communication with actuator controllers
 - Shared memory approach: SCRAMNet
 - Analog voltage input/output method
- Analog voltage input/output with the actuator controllers
 - Reliable, portable, easy-to-use and cost-efficient

NICON – Network Interface for Controllers

Actuator Controllers

UT-SIM: University of Toronto Simulation Framework

Module 1: Experimental Substructure

Experimental Setup Architecture

Zhan, H. and Kwon, O. (2015) "Actuator controller interface program for pseudo-dynamic hybrid simulation," Advances in Structural Engineering Mechanics, Songdo, Korea, Aug. 25-29, 2015.

Module 1: Experimental Substructure

Experimental Setup Architecture Example

□ Generic Network Interface for Controllers (NICON)

- Seneric algorithm for coordinate and force transformation
- Currently working with the NI CompactRIO-9022 DAQ

Application Examples

Able to host a variety of application examples

(a) Beam-Column elements: 3 DOFs

(b) Flexural-Torsional elements: 3 DOFs

(c) General 6DOFs frame elements

7

Generic NICON: Coordinate Transformation Architecture

(a) Total displacements in the global coordinate

(b) Total displacements in the element coordinate

(c) Relative displacements in the element coordinate

(e) Actuator strokes

(d) Displacements in the control point's coordinate

8

□ UT10 Simulator

- ♦ Able to test up to 10 uni-axial elements
- Oeveloped for testing braces and friction/yielding dampers
- Performs the required coordinate and force transformation (two dimensional displacement command to uni-axial stroke)
- Includes error compensation scheme

10 Element Hybrid Simulator

Dedicated Column Tester Hybrid Simulator

- Oeveloped for column testing common setups
- Based on a Weakly-Coupled Hybrid Simulation architecture to address control limitations
- Performs the required coordinate and force transformation (two dimensional displacement to coupled stroke commands)
- Includes error compensation scheme

10

Dedicated version for Hybrid Fire Testing

- Oeveloped for steel structure simulation in fire
- Includes a step-timed control to synchronize the thermal loading with the mechanical testing
- Includes error compensation scheme

Dedicated NICON for Fire Testing

Featured NICON: Single DOF version

LabVIEW System Design Software

- ♦ User-friendly customizable interface
- Sraphical programming syntax
- Extensive built-in library for data acquisition and signal processing

Front Panel (NICON.vi)

Block Diagram

Command Source, Control & Monitor Panel

Analog Input (Timed) Loop Measurement Block

Featured NICON: Single DOF version

□ Main Functions Overview

- Initialization block diagram
- Analog input loop Measurement
- Analog output loop Command
- Network communication block Hybrid testing
- ♦ Analog I/O logging loop
- Saving configuration event structure

NICON: Initialization

Responsible for Initialization of the Configuration Parameters

- Network Port Number: Communication port with the integration module
- Control Parameters: The ramp and hold time, I/O update and logging rate
- Limit Parameters: Actuator's available stroke and force limits
- Scale Factors: Calibration factors for the voltage to measurements and commands transformation
- Physical Channels Definition: The input and output channels are defined in accordance with the used DAQ

These parameters are defined in NICON_Config.xml (eXtensible Markup Language)

NICON: Analog Input – Measurements

Responsible for Measuring the Current Displacement and Force

- Transforming the physical channel measurement into 1D-waveform
- ♦ Signal processing using a low-pass Butterworth filter
- Transforming the input voltage into displacement and force measurements
- Performing the force limit check

NICON: Analog Output – Command

Responsible for Transforming the Command Deformation to Voltage

- Performing the stroke limit check
- Senerating the ramp stages*
- Transforming the stroke commands into excitation voltage

Three Different Command Sources Available

- ♦ User Input Manual control
- ♦ Network (PSD Test) Hybrid testing
- ♦ Time History Predefined deformation command history

NICON: Analog Output – Command

□ Ramp Generation Stages

NICON: Network Communication

Responsible for the Communication with the Substructure Element

- Performing the initiation of the server and the setup of the communication
- Receiving the commands and sending the measurements in TCP-IP format
- Monitoring the testing status
- Logging the network communication for post-testing troubleshooting purposes

Command Source	Command Source
Network (PSD Test) User Input Time History	Network (PSD Test) User Input Time History
Note: PSD Test is compatible with SIMCOR Binary Protocol.	Note: PSD Test is compatible with SIMCOR Binary Protocol.
Port Number 8090 CMD recvd 10 Start Server	Port Number 8090 CMD recvd 99 Start Server
Current Step Number 1 Start Communication	Current Step Number 300 Start Communication
SocketNum 15224 NC Status Ready to Read the values	SocketNum 58608 NC Status Ready to Read the values
Create data exchange format	Create data exchange format
Connected Waiting CMD Testing Reporting Completed	Connected Waiting CMD Testing Reporting Completed

Network Monitoring and Control Panel

NICON: Additional Features

□ Analog I/O Logging Loop

- Recording the voltage, stroke, displacement and force input and output for post testing analysis purposes
- ♦ The logging rate is defined by the user

□ Saving Configuration Event Structure

The configuration file (*NICON_Config.xml*) is updated in accordance with the modifications into the configuration parameters made into the LabVIEW environment

Demonstration of the Featured NICON

Control of a Small Scale Actuator Replica Using the Featured NICON

- Onnect with the DAQ system
- Introduction to NICON front panel environment
- Manual control of the applied stroke
- Perform hybrid simulation (2nd Day)

Small Scale Actuator Replica

Demonstration of the Featured NICON

□ Connect with the DAQ (Physical Channels)

- Actuator's Stoke Command: Dev1/AO1 (Differential Connection)
- Referenced Single-Ended (RSE) Connection: AI GND
- Measured Deformation: Dev1/AI0 (RSE Connection)
- Measured Force: Dev1/AI1 (RSE Connection)
- Floating Source: Isolated ground-reference sources

NI USB-6218 BNC

16 Dif. Analog Input (32 S.E)2 Dif. Analog Output8 Digital Input8 Digital Output

Demonstration of the Featured NICON

Moving to Network Interface for Controllers

NICON - Network Interface for Controllers	University of Toronto
Command Source Network (PSD Test) User Input Time History Note: PSD Test is compatible with SIMCOR Binary Protocol. Port Number 8090 CMD recvd 10 Current Step Number 210 recvied target Displacement -6.92956 SocketNum 48900 NC Status Ready to Read the values Create data exchange format Connected Waiting CMD Testing Reporting Completed Completed	Control Panel Control Limits Scale Factors Previous Target Disp 4.25025 Current Command Disp 4.25881 Current Target Disp 6.92956 Current Measured Disp 4.31039 Ramp Generation RampMode Ramp (ms) Hold (ms) Sinchave Sinchave Control Displacement Limit Status Force Limit status Cancel Control On/Off Analog I/O update rate (ms) 10 Analog I/O logging rate (ms) 500 Control
Monitoring Panel Time History Force - Displacement Raw Voltages Actual Tared Measured Displacement (mm) (-4.310) -4.310 -4.257 -4.57 -0- -0.5- -0- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -0- -0.5- -	Actual Tared Measured Force (KN) 7.530 -1 -2 -3 -4 -5 -6 -7 -8 -7 -55:44.333 PM 2017-03-23 Time

Thank you for you attention. Questions?

Georgios Giotis

MASc Candidate Department of Civil Engineering University of Toronto

2017 UT-SIM Workshop