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CHAPTER 1. INTRODUCTION 

1.1   BACKGROUND 

The performance assessment of civil infrastructure, such as buildings, bridges, subway tunnels, 

power plants, etc., under extreme loading conditions still represents a formidable challenge for 

engineers. 

With current advancements in modeling techniques and computing power, increasingly complex 

and realistic models of structures are being developed and refined, primarily in a single modeling 

package. However, the scientific and engineering community has not yet achieved complete 

models that can capture the entire response of complex structural systems, in order to fully assess 

their performance under extreme loading conditions. Multiple challenges still remain as most 

complex systems incorporate very different components, each requiring a level of specialized 

modeling sophistication or even in some cases complete physical testing in order to capture the 

behaviour of the integrated system under multiple hazards such as earthquakes, tsunamis, 

tornadoes, blasts, fire, floods and so on. 

The complexities associated with the performance assessment of structural systems under extreme 

loads along with specific applicability of most structural analysis programs to specific 

material/structural components, has raised an increasing interest in multi-platform and 

experimental hybrid simulation methods, among the earthquake engineering research community.  

In this document the procedure for conducting multi-platform hybrid simulations, using a variety 

of structural analysis programs, and some of the recent developments at the University of Toronto, 

is presented through various examples.  

1.2   THE UT-SIM INITIATIVE 

The University of Toronto has a long standing tradition of developing cutting edge advanced 

numerical models for reinforced concrete structures, carrying large-scale experiments, developing 

new high-performance resilient structural systems, and is now one of the leading hubs on advanced 

hybrid simulation methods. The structural group is now integrating all of these capabilities to 

develop the next generation simulation platform that will achieve new levels of accuracy and 

reliability for the modeling of complex structural systems. This will contribute to the worldwide 

research effort of not only better understanding the expected response of critical infrastruc ture 

under extreme loading conditions, for better disaster planning or disaster mitigation, but also to 



2 

form the basis for accelerating the development and implementation of more resilient structural 

systems that will better protect the international infrastructure. 

The proposed University of Toronto simulation framework (UT-SIM) [Huang and Kwon; UT-

SIM, 2017] is an open concept method for structural simulation that is open to the entire research 

and community in order to foster collaboration between institutions towards developing the next 

generation of numerical and hybrid numerical-physical simulation strategies. 

1.3   UT-SIM OBJECTIVES 

The University of Toronto's Simulation (UT-SIM) Framework has been developed to achieve the 

following objectives: 

 Integration of diverse structural/geotechnical modeling and analysis tools. 

 Integration of numerical models in high performance computers with models on desktop 

computers. 

 Integration of physical specimens with numerical models for pseudo-dynamic and real-

time hybrid simulations. 

 Geographically distributed hybrid simulations with partner institutions, through the open-

source communication protocol. 

Achieving all of the above objectives through a single integration software is practically very 

difficult.  The UT-SIM framework is not a single software which can solve all problems; rather it 

is a framework for a seamless integration of diverse physical/numerical models through 

standardized communication protocols and data exchange format. 

To facilitate the implementation of this approach, the communication library and source code is 

released to the public domain such that any institution can easily integrate their own software or 

laboratory to an integrated simulation. Furthermore, as part of the UT-SIM framework, the 

University of Toronto structural group has developed the Network Interface for Console 

Application (NICA) and the Network Interface for Controllers (NICON) [Kammula et al., 2014; 

Zhao and Kwon, 2015; Mojiri et al., 2015a; Mojiri et al., 2015b] which are used to integrate 

various software and actuator controllers.  

1.4   HYBRID SIMULATION METHODS 

1.4.1 Experimental Hybrid Simulation Methods 

Hybrid testing is a novel experimental-analytical testing method in which the structural system is 

decomposed into several experimental and analytical subassemblies and the seismic performance 

of the system is evaluated by integrating the response of the substructures into the numerica l 

integration module. Hybrid tests can be classified into two categories based on what response 
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parameters are obtained from the physical substructures and which response parameters are 

obtained from the numerical model. In Pseudo-Dynamic Hybrid Simulation (PsDHS) the nature 

of the test specimen is to provide resistance to deformations. In such cases, the rate-dependent 

terms such as damping and the inertia forces of the test specimen are obtained from the numerica l 

model, while its restoring forces are obtained from the physical experiment. If the test is carried 

out in real-time, the test specimen may also provide restoring force to the rate of deformation 

(velocity). Such simulations are referred to as Real-Time Hybrid Simulation (RTHS). In such 

experiments, both rate-dependent and rate-independent forces of a physical specimen can be 

experimentally measured.  

The use of experimental and numerical substructures in hybrid simulation allows for testing the 

system as a whole by experimentally testing the critical structural elements, and without the need 

to physically build the complete physical system in the laboratory. Therefore, hybrid simula t ion 

results in a cost-effective and efficient experiment, which requires less space and resources in the 

laboratory, compared to the other common test methods in structural engineering research. 

1.4.2 Multi-Platform Numerical Hybrid Simulations 

With some exceptions, in most hybrid simulations one or more numerical substructures may be 

present that are coupled with the integration module. In some cases, numerical substructures work 

in conjunction with physical substructures, and in some cases, the hybrid model is solely 

comprised of numerical substructures. Therefore, Multi-Platform Numerical Hybrid Simulation 

can be regarded as a special case of hybrid simulation in which the substructures are modeled in 

different finite element (FE) models. The FE models can be developed using the same or different 

finite element packages.  

In such simulations typically one FE model acts as the integration module that runs a numerica l 

time stepping method for the complete system such as Cyrus [Sadeghian et al., 2015], OpenFresco 

[Shellenberg et al., 2008; 2009] OpenSees [McKenna et al., 2000], etc. while the rest of the FE 

models that analyze parts of the structure are linked to the main model as substructure modules 

such as OpenSees, ABAQUS [2013], VecTor2 [Wong et al., 2013], etc. The communication and 

data exchange between the FE models is carried out by a network interface, by specifying the 

interface nodes and their degrees of freedom (DOF). 

Coupling FE models, using different FE packages, provides numerous options and a wide range 

of advantages. The main advantage is that each structural component can be modeled with a finite 

element program that is best suited for the analysis of that structural component. Most advanced 

finite element packages are developed for specific use and do not offer the same advantages for 

other structural analysis applications. For instance, VecTor2 is best suited for the nonlinear 

analysis of 2D membrane reinforced concrete elements. ABAQUS, in structural applications, is 

best for the finite element analysis of structural components, such as steel connections. Other than 

providing versatile options for the finite element analysis of structural elements, OpenSees is also 
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suitable for modeling the soil medium in a soil-structure interaction problem. The ability to 

decompose a structural system into analytical substructures in different FE packages, allows the 

user to capture the benefits of each software program, leading to an accurate structural performance 

assessment, while maintaining an efficient analysis. 

Several simulation frameworks have been developed over the last decade to facilitate the 

implementation of multi-platform and hybrid simulations such as UI-SimCor [Kwon et al., 2008], 

OpenFresco [Shellenberg et al, 2008; Shellenberg et al., 2009], HybridFEM [Karavasilis et al., 

2008], Mercury [Saouma et al., 2012], P2P [Pan et al., 2006], ISEE [Wang et al., 2007; Yang et 

al. 2007], and so on. Huang and Kwon briefly discuss some of the unique features that each of 

these simulation frameworks offer. In recent years, the University of Toronto Simulation (UT-

SIM) framework [UT-SIM, 2017] has been developed at the University of Toronto, as an open 

source generalized simulation framework. The UT-SIM framework can be used for distributed 

numerical multi-platform simulations as well as experimental PsDHSs and RTHSs. 

1.5   UT-SIM FRAMEWORK ARCHITECTURE 

The UT-SIM framework [Huang and Kwon; UT-SIM, 2017] consists of mainly three components, 

including: (1) a communication protocol and data exchange format, (2) Integration module, and 

(3) Substructure modules. Figure 1. 1 shows a schematic illustration of the UT-SIM framework 

architecture. 

1.5.1 Communication Protocol and Data Exchange 

The key feature of the UT-SIM framework is a standardized data exchange format and a 

communication protocol, known as the University of Toronto Network Protocol (UTNP), through 

which any potential integration module or substructure module (either numerical or experimenta l) 

can be integrated into the simulation. This maximizes the use of available analysis tools and the 

use of computational and experimental resources. For additional information on UT-SIM 

communication protocol and data exchange format, visit http://www.UT-

SIM.ca/communication.html. 

1.5.2 Integration Module 

Integration modules are main software modules, which run numerical time integration schemes or 

serve as the main solver in the simulation. Thus, an integration module is used to model the 

majority of the structural system. In the network communication, the integration module acts as a 

client while substructure modules act as servers. Depending on the nature of the problems, one of 

several integration modules can be used for numerical multi-platform or experimental hybrid 

simulations. The integration modules that can currently be used within the UT-SIM framework 

include UI-SimCor v3.0 [Kwon et al., 2008], Cyrus [Sadeghian et al., 2015], S-Frame [2013], 

http://www.ut-sim.ca/communication.html
http://www.ut-sim.ca/communication.html
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OpenSees, and ABAQUS. For additional information on the available integration modules within 

the UT-SIM framework, visit http://www.UT-SIM.ca/integration-modules.html. 

 

Figure 1. 1: Schematic Illustration of the UT-SIM Framework 

1.5.3 Substructure Modules 

Substructure modules include numerical models or physical specimens that represent a relative ly 

small region of the structural system. In hybrid simulation, structural components whose response 

can critically affect the overall structural performance of the system, and therefore may need 

precise modeling, are represented by substructure modules. For instance, in an eccentric braced 

frame (EBF), the link beam could be modelled with a detailed finite element model, or even 

represented by a physical specimen, while the rest of the structure is modeled with frame elements.  

The analysis programs that can currently be used to represent the substructure module, in the UT-

SIM framework, include OpenSees, ABAQUS, Suite of VecTor programs [Vecchio, 2017], and 

generic console applications such as MATLAB and C++. For additional information on the 

available structural analysis programs that act as substructure modules, within the UT-SIM 

framework, visit http://www.UT-SIM.ca/substructure-modules.html. 

 

http://www.ut-sim.ca/integration-modules.html
http://www.ut-sim.ca/substructure-modules.html
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1.6 UT-SIM  FRAMEWORK NUMERICAL-EXPERIMENTAL HYBRID SIMULATION ELEMENTS 

In this section, the elements of UT-SIM framework that are used in hybrid simulations, in which 

the substructure modules consist of one or more physical specimens, are reviewed. A schematic 

illustration of the components of numerical-experimental hybrid simulations, in UT-SIM 

framework is shown in Figure 1. 2 . In addition to an integration module, discussed in Section 

1.5.2, and one or more physical specimens, representing the substructure modules, the components 

of a numerical-experimental hybrid simulation within the UT-SIM framework is are as follows. 

 

Figure 1. 2: Components of a Numerical-Experimental hybrid Simulation within the UT-SIM Framework 

1.6.1 Network Interface for Controllers (NICON) 

One of the important aspects in numerical-experimental hybrid simulation is to establish a 

communication network between the actuator controller and the numerical integration module. In 

the case that multiple actuators are used to control the coupled degrees of freedoms (DOF) of the 

physical specimen, the displacement commands in the numerical model’s Cartesian coordinate 

system need to be transformed to actuators’ strokes and feedback displacements. Further, the 

actuator forces need to be converted back to the model’s Cartesian coordinate system. An example 

of such a case is a column under axial and lateral forces and moment. 

Coordinate transformation of displacements and forces requires iterations due to the geometric 

nonlinearity of the testing setup. Establishing the communication and enabling the coordinate 
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transformation for hybrid simulations are not trivial tasks for a testing facility that is new to the 

simulation method. To facilitate the adoption of hybrid simulations in a conventional structural 

testing facility, a generalized controller interface program has been developed using LabVIEW 

and National Instrument’s hardware. The interface program, called the Network Interface for 

Controllers (NICON), receives commands from the network based on a standardized data 

exchange format (UTNP), converts coordinate systems, generates analog voltage commands to 

actuator controllers, and returns measured responses [Kammula et al., 2014; Zhan and Kwon, 

2015; Mojiri et al., 2015a; Mojiri et al. 2015b].  

 

 

Figure 1. 3: Typical Actuator Setups for Different Load Applications  

The original NICON program [Kammula et al., 2014; Zhan and Kwon, 2015] featured a 

generalized design to allow refinements for various configurations of testing setups such as single 

DOFs, three coupled DOFs, six coupled DOFs, and ten uncoupled DOFs. For instance, Giotis et 

al. used a refined version of NICON for coupled DOFs. Mojiri et al. [2015a; 2015b] extended the 

original version of NICON to NICON-10 for hybrid simulations on up to ten uncoupled uniaxia l 
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elements with the HT10 Hybrid Simulator. Figure 2 presents an illustration of typical combinations 

of actuators for different DOFs. 

Validation tests have been carried out using multi-axial testing apparatus at the University of 

Toronto. Typical actuator setups for load application to different DOFs are shown in Figure 1. 3. 

1.6.2 National Instrument (NI) Hardware 

In the UT-SIM framework, NICON allows communication between the integration module and 

the actuator controller. UTNP is used for communication between the integration module and 

NICON. For the communication between NICON and actuator controller, analog I/O using 

National Instruments hardware [2017] is used. The main reason for using analog I/O includes: 

1. Most actuator controllers can accept commands from external sources through analog 

signals, and output measured values through analog signals. This approach requires a D/A 

and A/D conversion process, but the time lag from the conversion process is negligible. In 

some studies, the analog signals have been used in real-time hybrid simulations as well.  

2. The hardware for generating and reading analog signals is generally inexpensive. Unless 

real time processing is required, generic voltage input and output modules can be purchased 

at a relatively low cost. It has been confirmed that analog I/O can be used to command and 

to get measurements from the controllers of the following vendors: MTS, Shore Western, 

and Instron. 

Some controllers include SCRAMNet cards such that an integration module and the actuator 

controller can directly access the same memory address, which is used as a mean of 

communication. This approach, however, requires proprietary SCRAMNet cards and controllers, 

which could be quite costly. 

Figure 1. 4 shows an NI hardware (CompactRIO), which is wired to the Shore Western Controller. 

Since the setup is intended to control a 6DOF system, the setup requires 6 channels of input to the 

controller, 6 channels of displacement output, 6 channels of force output, and additional channels 

to take measurements of a specimen externally. A similar setup is currently used for all other 

pseudo-dynamic hybrid simulations at the University of Toronto. 

1.6.3 Actuator Controller 

Actuator controllers run a PID control loop based on displacement or force feedback. In some real-

time hybrid simulations, the actuator control loop is modified to minimize the time lag coming 

from the physical system (actuator-specimen). In pseudo-dynamic hybrid simulations, the lag is 

not an issue. As long as the actuators can impose the target displacement up to a certain level of 

accuracy, the controller can be used for hybrid simulations. 
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Figure 1. 4: CompactRIO NI Hardware Wired to the Shore Western Controller 

The most common limiting factor is usually the flexibility of the reaction system. Most actuators 

use their internal LVDT as a displacement feedback signal, which is not the actual deformation of 
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the specimen. The actual deformation of the specimen is influenced by the relative stiffness of the 

specimen and the reaction system. Thus, in many tests, the actual specimen's deformation needs 

to be externally measured, and then used as a displacement feedback. This approach is somewhat 

unsafe if a specimen fails abruptly, or if there is any chance that debris such as spalling concrete 

hits the LVDT. In many applications, the external feedback is used to construct an additional layer 

of external control loop, for updating the command in Module #2 to Module #4, shown in Figure 

1. 2. 

1.6.4 Actuators 

Most actuators in structural testing applications use hydraulic systems. Depending on the number 

of DOFs, the equipment may consist of a single actuator or several coupled actuators acting 

simultaneously. In the Structural Testing Facility at the University of Toronto, several unique 

pieces of equipment are available, all of which can be fully integrated into hybrid simulations using 

the UT-SIM framework. Some of the equipment that have been integrated in hybrid simulat ions 

include the UT10 Simulator and the Shell Element Tester [Mojiri et al. 2015a; 2015b], the Column 

Testing Frame [Giotis et al.], the 6DOF Testing Machine [Sadeghian et al.], and the Uniaxia l 

Shaking Table. For additional information on these testing equipment visit http://www.UT-

SIM.ca/hybrid-simulation.html. 

1.7   UT-SIM MULTI-PLATFORM NUMERICAL-NUMERICAL HYBRID SIMULATION ELEMENTS  

In addition to an integration module, discussed in Section 1.5.2, and a substructure modules, 

discussed in Section 1.5.3, in a purely numerical hybrid simulation, or in multi-platform hybrid 

simulations, where at least one of the substructure elements is represented with an analyt ica l 

model, a communication system must be established to link the structural analysis programs in 

which the substructure elements are modeled. 

1.7.1 Network Interface for Console Applications (NICA) 

In order to couple structural analysis programs as substructure modules, it is necessary to 

implement functionalities to communicate with an integration module, to impose target 

displacements, and to return restoring forces of controlled DOFs back to the integratio n module. 

Many structural analysis tools, however, do not have such functionalities. Typically, either the 

source code of the software needs to be modified, or an interface program needs to be used to allow 

the software to communicate through the network. These are often referred to as adapter elements 

as well. 

Network Interface for Console Applications (NICA) has been developed at the University of 

Toronto for this purpose [Huang and Kwon; UT-SIM, 2017]. NICA provides exchange of data 

between an integration module and a numerical substructure module such as OpenSees, ABAQUS 

or others. Structural analysis programs that can be used as a substructure module through NICA 

http://www.ut-sim.ca/hybrid-simulation.html
http://www.ut-sim.ca/hybrid-simulation.html
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include: (1) Zeus-NL. (2) ABAQUS, (3) OpenSees, and (4) Generic Console Application for other 

developed finite element programs. 

1.8   UT-SIM FRAMEWORK MULTI-PLATFORM HYBRID SIMULATION ELEMENTS 

Multi-platform hybrid simulation refers to hybrid simulations in which both analytical and 

physical substructures could be present. The components of such a simulation includes all those 

discussed in Sections 1.6 and 1.7. 

1.9   REPORT OUTLINE 

Complex structures that require advanced analyses could benefit greatly from different advantages 

that alternative structural analysis programs, or even the testing of physical specimens offer. In 

such structures, the UT-SIM framework can be used to incorporate several structural analysis 

programs in the integrated hybrid simulation, leading to accurate, yet efficient analyses. Some 

examples where coupling structural analysis programs could greatly benefit the structural 

performance assessment include the following: 

1. In the analysis and design of nuclear power plants, it is paramount to account for soil-

structure interaction. In such a case, the super-structure (power plant) can be modeled with 

VecTor 4, and the soil medium can be modeled in OpenSees platform. The two 

substructures can be integrated into one hybrid simulation using the UT – SIM Framework. 

2. In modeling steel structures using OpenSees or S-Frame, usually the connection behavior 

is modeled with localized calibrated springs. While this is a reasonable approach, the 

analysis can benefit greatly from modeling the connection in a robust finite element 

software such as ABAQUS, and coupling the connection substructure with the OpenSees 

integration module.  

3. Many structural analysis programs such as OpenSees do not provide reliable models for 

predicting the behavior of RC members in shear. Further, the interaction of shear with axial 

force and bending moment is not considered. Such mechanisms could significantly affect 

the results and, at times, result in a completely different failure mode for the structure. In 

such cases, VecTor2 can be used to model the shear critical RC substructure. The 

substructure can then be coupled with the OpenSees integration module. 

4. The seismic performance of a building structure with base isolators is critically affected by 

the behavior of the base isolation system. In such a case, the base isolators can be physically 

built and tested in the laboratory, and numerically integrated with the rest of the structure 

modeled in OpenSees. Such an approach will result in a much more precise seismic 

performance assessment of the system.  
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Hence, improved multi-platform numerical models, using the distinct advantages of different finite 

element packages, can greatly enhance the reliability of structural performance assessments. This 

will ultimately result in improved resilience of the international infrastructure. The main purpose 

of this report is to provide an outline to assist researchers and structural engineering practitioners 

in using the UT-SIM framework for the performance assessment of structures. 

Various hybrid simulations are presented in the following Chapters. In the presented hybrid 

simulations, different programs are used as integration modules, and as substructure modules. The 

report and the presented examples will be available for download at http://www.ut-sim.ca/. Each 

Chapter contains a hybrid simulation example, an overview of the communication system, and a 

step-by-step procedure to carry out a similar hybrid simulation. 

In the second Chapter, the example structures that are used in the multi-platform simulations are 

introduced and presented.  

In the third Chapter, the procedure for linking two OpenSees models is presented through an 

example.  

Chapter 4 presents a numerical multi-platform simulation on the same structure in which OpenSees 

acts as the integration module, while the substructure is represented with a MATLAB script.  

Chapter 5 presents a similar example to that presented in Chapter 4, with the substructure presented 

with a C++ script.  

In Chapter 6, the procedure to carry out numerical multi-platform simulations using an ABAQUS 

model as the integration module, and an ABAQUS model as the substructure module is presented.  

Chapter 7 presents the same procedure as that described in Chapter 6, with the integration module 

presented with an OpenSees model.  

Chapter 8 presents the same procedure as that described in Chapter 6, with the substructure module 

presented with an OpenSees model.  

Chapter 9 provides an example of the implementation of numerical-experimental hybrid 

simulations, in which an OpenSees model acts as the integration module and the substructure is 

represented by a physical spring.  

Chapter 10 provides an example outlining the procedure for conducting analytical hybrid 

simulations in which an OpenSees model acts as the integration module, and a VecTor2 model 

acts as the substructure module.  

Chapter 11 focuses on the use of high performance computers (HPC) in hybrid simulations within 

the UT-SIM framework. The procedure is outlined to perform numerical multi-platform 

simulations in which the integration module is presented by an OpenSeesSP [McKenna and 

Fenves, 2007] model, running on a HPC, and the substructure module is represented by an 

OpenSees model, running on a regular operating system.  

http://www.ut-sim.ca/
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In Chapter 12, the same example as that described for Chapter 10 is presented, with the difference 

that the integration module is represented by an S-FRAME model. The procedure for using S-

FRAME as the integration module is outline. 

It must be noted that the selected examples presented in this report can be extended to any 

combination of the integration modules and substructure modules, available within the UT-SIM 

framework, in a completely analogous manner. For instance, In Chapters 3, 6, 7, and 8, the same 

numerical integration modules and substructure modules are used in different combinations. 
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CHAPTER 2. EXAMPLE STRUCTURES 

2.1   INTRODUCTION 

This report presents the application of the UT-SIM framework [Huang and Kwon; UT-SIM, 2017] 

to structural analysis and performance assessment of infrastructures, through simple examples. 

The example structures, which are used in Chapters 3 to 12, are presented and discussed in this 

Chapter.  

2.2   EXAMPLE STRUCTURE I 

2.2.1 General Background and Design 

Example Structure I is a 2 dimensional one-story one-bay steel frame, on the perimeter of a one-

story steel building with large footprint, and is laterally supported with a single concentric 

buckling-restrained brace (BRB). The structure is located in Vancouver, Canada and is on site 

class ‘C’.  

 

Figure 2. 1: Illustration of Example Structure I 
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The height of the braced frame is 3.3 meters and the span is 6.0 meters long. The columns are 

simply supported at their base and the beam is connected to the columns using simple connections 

without flexural rigidity. Both columns are 254x254x8.0 HSS members of Class C 350W structural 

steel. The beam element can be assumed to be a rigid element. The core of the BRB consists of a 

160mm x 6.4mm steel plate of 300W structural steel. The whole system is supported by a raft 

foundation on dense soil where the soil settlements are negligible. The seismic weight of the 

system is 2000 KN (equivalent to a seismic mass of 204 tons) and is lumped at the first story.  

Figure 2. 1 illustrates a sketch of the structural system. The first mode period is calculated to be 

0.597 seconds. 

2.2.2 Analytical Substructures 

Figure 2. 2 illustrates the decomposition of Example Structure I into the integration module and 

the substructural module. In the sub-structuring scheme, the steel frame without the BRB, shown 

in Figure 2. 2 (b) acts the integration module, while the BRB element, shown in Figure 2. 2 (c), 

acts as the substructure module. 

The sub-structuring decomposition is the same in all hybrid simulations in which Example 

Structure I is used. 

 

(a)         (b)             (c) 

Figure 2. 2: Illustration of the Analytical Models – (a) Standalone Structure, (b) Integration Module, and (c) 

Substructure Module 

2.2.3 Earthquake Ground Record 

In the examples provided in Chapters 3, 4, 5, and 11, Example Structure I is subjected to an 

earthquake ground motion record. 

The system is subjected to the simulated record M6C1 with a scale factor of 0.78 to match the 

uniform hazard spectrum of Vancouver [Atkinson, 2009]. Figure 2. 3 provides a comparison 

between the pseudo acceleration response spectrum (PSA) of the scaled record and the Vancouver 

uniform hazard spectrum (UHS). The shaded area shows the period range of interest as per the 

provisions of ASCE 7-10 [2010]. 
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Figure 2. 3: Pseudo Acceleration Response Spectrum of the Scaled Record vs. the Target Uniform Hazard Spectrum 

2.2.4 Pushover Loading 

In the examples provided in Chapters 6, 7, and 8, a pushover analysis is carried out on Example 

Structure I. 

Additional information such as material behavior, modeling assumptions, etc., are discussed in 

each specific Chapter. 

2.3   EXAMPLE STRUCTURE II 

2.3.1 General Background and Design 

Example Structure II is a 2 dimensional two-story one-bay concrete moment resisting frame, 

located in Vancouver, Canada, on site class ‘C’. The system is supported by a raft foundation 

rested on dense soil where the soil settlements are negligible. Figure 2. 4 illustrates a sketch of the 

structure. 

The structure is designed the using spectral acceleration ordinates specified for Vancouver, and 

using an RdRo of 3.5. The design is carried out as per the provisions of NBCC 2010 [2010], and 

CSA A23.3 [2004], without enforcing the seismic provisions. This is carried out to resemble the 

behaviour of a reinforced concrete moment resisting frame designed prior to the implementa t ion 

of seismic design guidelines in design standards. The seismic mass in each floor is 30 tons, 

equivalent to a seismic weight of 294.3 kN. The height of each floor is 3.3 meters, and the span of 

the frame is 5.0 meters long. The concrete compressive strength, after 28 days, is expected to be 

f’c = 30 MPa. The yield strength of all reinforcing bars is assumed to be fy = 400 MPa.  
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Figure 2. 4: Illustration of Example Structure II 

A diaphragm constraint is assigned to the joints in each floor. A lumped-mass model is used for 

modeling the seismic mass of the structure at each floor. A modal response spectrum analysis is 

carried out on the structure, and the periods of the first and the second mode of vibration are 

determined as 0.436 seconds and 0.126 seconds, respectively, from a preliminary ETABS model. 

Figure 2. 5 shows the two modes of vibration, as obtained from the preliminary analytical model. 

  

                                        (a) (b) 

Figure 2. 5: Modes of Vibration – (a) First Mode (T1 = 0.436 s), and (b) Second Mode (T2 = 0.126 s) 
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Using an equivalent static force procedure (ESFP) as per NBCC 2010 [2010] specifications, the 

base shear is calculated as 99 kN. The base shear calculated using a modal response spectrum 

analysis method is 102 kN, and is more than 80% of the base shear obtained from the ESFP, and 

hence does not require additional scaling. The members are designed under gravity loads as well 

as seismically induced bending moments and shear forces, obtained from the modal response 

spectrum analysis. Figure 2. 6 shows the typical section for the columns, as well as the floor beam.  

  

(a) (b) 

Figure 2. 6: Frame Member in Example Structure II– (a) Typical Detail for Columns, and (b) Typical Beam Detail 

First floor inter-story drift is calculated as 0.525%, and the second floor inter-story drift is 

calculated as 0.595%. Both inter-story drifts are well below the 2.5% limit for normal importance 

structures, as specified by NBCC 2010 [2010]. 

2.3.2 Analytical Substructures 

Figure 2. 7 illustrates the decomposition of the Example Structure II into the integration module 

and the substructural module. The substructure module includes the concrete beam-column joint 

sub-assemblies on the first floor, shown in Figure 2. 7 (c). The rest of the structure acts as the 

integration module, as shown in Figure 2. 7 (b). The sub-structuring decomposition is the same in 

all hybrid simulations in which Example Structure II is used. 

 

 

= 

 

 

 

+ 

 
 

 

(a)  (b)  (c) 

Figure 2. 7: Decomposition of Example Structure II into Analytical Substructures – (a) Standalone Model, (b) 

Integration Module, (c) Substructural Module 
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2.3.3 Earthquake Ground Record 

In the example provided in Chapter 10, the example structure is subjected to an earthquake ground 

motion record. 

The system is subjected to the simulated record M6C1 with a scale factor of 0.78 to match the 

uniform hazard spectrum of Vancouver [Atkinson, 2009]. Figure 2. 8 provides a comparison 

between the pseudo acceleration response spectrum (PSA) of the scaled record and the Vancouver 

uniform hazard spectrum (UHS). The shaded area shows the period range of interest as per the 

provisions of ASCE 7-10 [2010]. 

2.3.4 Pushover Loading 

In the example provided in Chapter 12, a pushover analysis is carried out on the structure. 

Additional information such as material behavior, modeling assumptions, etc., are discussed in 

each specific Chapter. 

 

Figure 2. 8: Pseudo Acceleration Response Spectrum of the Scaled Record vs. the Target Uniform Hazard Spectrum 

2.4  EXAMPLE STRUCTURE III 

2.4.1 General Background 

Example Structure III is a simple two degree of freedom (DOF) mass-spring system shown in 

Figure 2. 9. The system only experiences motion in the horizontal direction. The masses are free 

to slide horizontally. Both M1 and M2 are 20.0 kg, while K1 and K2 are 5.0 N/mm. A damping 

ratio of 2% is assumed for the first and the second mode of the structure. The periods of the 

structure are calculated as 0.643 seconds and 0.246 seconds for the first and the second modes, 

respectively. 
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Figure 2. 9: Illustration of Example Structure III 

2.4.2 Analytical Substructures 

Figure 2. 10 illustrates the decomposition of the structure into the analytical substructures. In the 

experimental hybrid simulation presented in Chapter 11, the first spring (K1) is represented by a 

physical substructure, as shown in Figure 2. 10 (c), while the rest of the structure acts as the 

integration module, as shown in Figure 2. 10 (b).  

 

 

(a) 

=
 

 

(b) 

+ 

 

(c) 

Figure 2. 10: Decomposition of the Example Structure III into Analytical Substructures – (a) Standalone Model, (b) 

Integration module, and (c) Substructure module 
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2.4.3 Earthquake Record 

In order to limit the time of the experimental hybrid simulation, Arias intensity time bracketing 

scheme is used to obtain a portion of the M6C1 earthquake ground motion record [Atkinson, 2009] 

during which 15% to 85% of the seismic input energy is accumulated. The main criteria for 

choosing such duration is to limit the ground motion length. The resulting ground motion, which 

is included in the example files as M6C1_1.txt, is 2.4 seconds long. 

A scaling factor of 3.0 is used for the ground motion. This factor is determined such that the 

displacement of the physical substructure does not exceed the actuator stroke. 

Further information on Example Structure III are discussed in Chapter 9. 
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CHAPTER 3. ANALYTICAL HYBRID SIMULATION 

OPENSEES – OPENSEES 

3.1   INTRODUCTION 

In this Chapter the step by step procedure for conducting analytical hybrid simulation by coupling 

two OpenSees [McKenna et al., 2000] models, one acting as the integration module and one as the 

substructure module, is presented through an example. 

3.2   COMMUNICATION OVERVIEW 

Shown in Figure 3. 1, is a schematic illustration on how communication is established in numerica l 

multi-platform hybrid simulations in which an OpenSees model acts as the integration module, 

and one or more OpenSees models act as numerical substructures. 

 

 

Figure 3. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulation with an OpenSees Integration Module and OpenSees Substructure Modules  

In order to use OpenSees as the main integration module, an OpenSees element termed as 

SubStructure element has been defined and implemented in OpenSees platform [Huang and Kwon; 

UT-SIM, 2017]. The SubStructure element is defined to exchange data between the integrat ion 

module and the substructure module. The properties of the SubStructure element, and the interface 

nodes as defined in the integration module, are read from the .txt files ‘Kinit.txt’ and ‘Structfile. txt’ 
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files, respectively. The ‘Kinit.txt’ and ‘Structfile.txt’ files can be specified/edited by the user, in 

the same folder where the OpenSees model representing the integration module is located. 

Further, the interface program NICA, which was defined in Chapter 1, has been developed to 

externally control the OpenSees substructure analytical model, during the analysis. The interface 

nodes, as defined in the numerical substructure model, are specified in the ‘NICA.cfg’ file by the 

user. The ‘NICA.cfg’ file can be edited with any text editor and must be stored in the same folder 

where the numerical substructure model is located. 

Communication between the SubStructure element, defined in OpenSees, and the interface 

program NICA, is enabled by UTNP, which is complied within a Dynamic Link Library, 

DataExchange.dll. 

3.3   EXAMPLE STRUCTURE 

The example structure used in this Chapter is Example Structure I, described in Section 2.2. The 

sub-structuring scheme is the same as that described in Chapter 2, Section 2.2.2. The structure is 

subjected to the earthquake ground motion, described in Section 2.2.3. 

3.4   ANALYTICAL MODELS 

In the example numerical hybrid simulation presented herein, first the structural system is modeled 

in OpenSees platform as a whole. This is carried out to provide a basis for comparing the results 

of the numerical analysis to the results obtained from the analytical hybrid simulation. Figure 3. 2 

(a) shows the complete structure as modeled in OpenSees.  

Next, the structure is decomposed into two numerical models to act as numerical substructures. In 

the first numerical substructure, the frame without the BRB specimen is modeled in OpenSees 

platform. This model will act as the integration module. Figure 3. 2 (b) illustrates the integrat ion 

module. 

Afterwards, the BRB specimen is modeled as another numerical substructure in OpenSees 

platform. This model will act as the substructure module, as shown in Figure 3. 2 (c).  

When defining the numerical substructures, the sequence of the interface nodes must be consistent, 

and in the ascending order. The unit systems used in the analytical substructures must also be 

consistent. 

In the multi-platform numerical simulation, it is important that an Alpha OS integrator  

[Combescure and Pegon, 1997] is used for the analysis, and force recorders are not enabled in the 

OpenSees model. The analysis force outputs can be obtained from the generated .txt files, as 

discussed in Section 3.6. Displacement recorders can be enabled in the hybrid model. 
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                          (a)            (b)                (c) 

Figure 3. 2: Illustration of the Analytical Models – (a) Standalone OpenSees Model, (b) OpenSees Integration 

Module, and (c) OpenSees Substructure Module 

3.5  PROCEDURE FOR PERFORMING THE NUMERICAL MULTI-PLATFORM SIMULATION 

3.5.1 Software Requirements 

Prior to starting the analytical hybrid simulation steps, it is vital to ensure the following: 

1. Extract the content of the ZIP file ‘HSF.zip’, in the example files, and place a copy of the 

‘HSF’ folder on the computer drive on which the operating system is installed. This will 

allow for NICA to run on the system. 

2. Ensure that the OpenSees version that is used for the analysis is 2.4.3 (rev 5645). The 

reason for this step is that the SubStructure OpenSees element has been developed for 

OpenSees 2.4.3 and has not been updated yet. 

3. It is imperative that the two .dll files ‘SubStructure.dll’ and ‘DataExchange.dll’ are placed 

in the folder from where the OpenSees executable file is running, as shown in Figure 3. 3. 

If OpenSees is running from the same folder as the model, then the two above-mentioned 

files must be placed in that folder. The files can be found in the folder containing the 

example files. 

 

Figure 3. 3: Example Illustration of the Folder Containing the OpenSees Executable File  

3.5.2 OpenSees Modeling 

As previously discussed, the complete structure, the integration module, and the substructure 

module have been modeled in OpenSees platform. The seismic mass of the system is lumped at 

the two nodes at the top story. Since the response of the structure in the Y direction is not of 
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interest, only a small mass is assigned to the nodes in the Y direction to avoid numerica l 

instabilities. The HSS columns are modeled using elasticBeamColumn elements to respond in the 

elastic range. The beam member is defined with a CorotationalTruss element, with its force-

deformation defined using an Elastic uniaxialMaterial. The BRB element is modeled as a 

CorotationalTruss element, with its force-deformation defined using the Steel02 uniaxialMaterial. 

A mass proportional damping of 5% is assumed for the first mode. The system is subjected to the 

simulated record M6C1 with a scale factor of 0.78 to match the uniform hazard spectrum of 

Vancouver [Atkinson, 2009], as described in Section 2.2.3. Direct time-step integrations of the 

equations of motion are carried out using a time-step of 0.001s. The first mode period is calculated 

to be 0.597 seconds. 

It must be noted, that the substructure module implemented in OpenSees, automatically considers 

Rayleigh damping. In OpenSees platform, ZeroLength, Truss and CorotationalTruss elements do 

not automatically take Rayleigh damping into account. Therefore, for consistent results, the –

doRayleigh 1 must be added in the script to consider damping both in the complete model as well 

as the hybrid model. In the present example, since a mass proportional damping is considered this 

is not necessary. 

The OpenSees scripts for all three models are provided with the example files. 

In order to link the two substructures, the OpenSees SubStructure module developed for 

communication with NICA must be defined in the OpenSees script acting as the numerica l 

integration module. This can be done by the following command: 

 element SubStructure $eleTag –file Structfile.txt –Kinit Kinit.txt; 

where $eleTag is the unique element tag for the structural component treated as the substructure  

module. In the current example, the substructure is the BRB element, which has the element tag 

of 1 in the standalone OpenSees model. The same tag is used in the OpenSees integration module. 

‘Structfile.txt’ and ‘Kinit.txt’ are the .txt files in which the information about the location, 

boundary conditions, and the initial stiffness of substructure module are specified. These .txt files 

must be created in the same folder in which the numerical model acting as the integration module 

is located. Specification of the structural properties and the interface nodes for the structure are 

described in the proceeding sections.  

3.5.3 Procedure for linking the two Substructures 

After creating both OpenSees models, linking the two substructures can be done with the following 

procedure: 

1. If OpenSees is running from the folder in which the OpenSees integration module is 

located, ensure that the previously mentioned .dll files, ‘SubStructure.dll’ and 

‘DataExchange.dll’ are placed in the same folder. 
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2. In the folder where the OpenSees integration module is located, create a .txt file titled 

‘Kinit.txt’, which contains the initial stiffness of the substructural element, in the global 

coordinates. The integration module reads the initial stiffness of the substructural element 

from this .txt file for starting the analysis, solving the eigenvalue problem, and reporting 

the periods of the structure. In addition, the displacement commands that are imposed on 

the substructure module are determined according to the specified stiffness in the ‘Kinit.txt’ 

file. 

In the example structure, the substructure module is a truss element. Thus, the stiffness matrices 

of the element in local and global coordinates take the following form: 
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where KL is the element stiffness matrix in the element local coordinates, E is the material modulus 

of elasticity, A is the element cross sectional area, L is the length of the element, KG is the element 

stiffness matrix in the global coordinates, and ϴ is the element’s angle with the horizontal axis. 

In the example problem, we have: 

200000E  MPa     (Modulus Elasticity of Steel Material) 

210244.6160 mmmmmmA      (Cross Sectional Area of the BRB Steel Core) 

mmL 63.684733006000 22    (BRB Length) 

8.28
6000

33001 







 Tan    (BRB Angle with the Horizontal Axis) 

By inputting the values into Equation 3.2: 
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Hence, the ‘Kinit.txt’ file for the example structure will be similar to that shown in Figure 3. 4. 

 

Figure 3. 4: ‘Kinit.txt’ File for the Example Structure 

3. In the same folder where the integration module is located, a .txt file ‘Structfile.txt’ must 

be created. The interface nodes and their DOFs, in the integration module, will be specified 

in this file. Figure 3. 5 shows the node-numbering scheme that is used in the OpenSees 

integration module, as well as the OpenSees substructure module. Note that the sequence 

of the interface nodes when defining the integration module and the substructure module 

must be the same. 

Figure 3. 6 shows the ‘Structfile.txt’ file for the example structure. 

As can be observed in Figure 3. 5, the BRB element in the example structure, which is modeled as 

the substructure module, is connected to nodes 1 and 4. Therefore, ‘NumNode’ is set equal to 2 in 

the ‘Structfile.txt’, identifying that the substructure module is connected to the integration module 

through 2 nodes, specified as nodes 1 and 4. Further, it is indicated that each node has three DOFs 

by setting ‘NumDOFs’ equal to 3. 

 

(a) (b) (c) 

Figure 3. 5: Node Numbering Scheme in the Numerical OpenSees Models – (a) OpenSees Standalone Numerical 

Model, (b) OpenSees Integration Module, and (c) OpenSees Substructure Module  
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Figure 3. 6: ‘StructFile.txt’ File Inputs for the Example Structure 

4. In the same folder where the integration module is located, create a sub-folder named 

‘NICA’ and place all the files accompanying the NICA executable file in this folder. The 

NICA executable file can be found in the example files. 

5. Place the numerical OpenSees model, representing the substructure module, the BRB 

OpenSees substructure model in the current example, along with any OpenSees source files 

that are required for the analysis, in the ‘NICA’ folder. 

6. Open the ‘NICA.cfg’ file with a text editor and input data according to the example. Figure 

3.7 shows the ‘NICA.cfg’ inputs for the example problem. 

It is important that the Port Number in Figure 3. 7 matches the one specified in Figure 3. 6.  

The ‘MDL_Type’ number specifies the finite element program in which the substructure module 

is modeled. Values 1, 2, 3, 4, and 9 can be used for Zeus-NL, OpenSees, ABAQUS [2013], VecTor 

[Vecchio, 2017], and generic console-in console-out, respectively. In the current example, 

‘MDL_Type’ is set equal to 2 to identify that the substructure module is represented by an 

OpenSees numerical model.  

‘MDL_Node’ specifies the control nodes, which are specified in the substructure module. As 

shown in Figure 3. 5, in the current example these node numbers are consistent with their 

corresponding nodes numbers in the integration module. Hence, [1 4] is specified. It is essential 

that the sequence of interface nodes, specified here, is consistent with the nodes specified in Figure 

3. 6. 



29 

 

Figure 3. 7: ‘NICA.cfg’ File Inputs for the Example Structure 

The model dimension must be specified for ‘MDL_Dim’ input. As the example problem is a 2-

Dimensional problem, the value of 2 is specified for ‘MDL_Dim’. 

‘EFF_DOF’ identifies the degrees of freedom for each specified node in ‘MDL_Node’, in the order 

of X, Y, Z, MX, MY, and MZ. For each DOF, 1 indicates the possibility of movement, where 0 

shows the opposite. As the example problem is a 2D structure, modeled in the XY plane, only X, 

Y, and MZ DOFs are present for each node. Hence, ‘EFF_DOF’ takes the form: 1 1 0 0 0 1. 

Lastly, in the ‘NICA.cfg’ file, the name of the substructure numerical model must be specified, 

including the extension.  

3.5.4 Hybrid Simulation Execution 

Upon completion of the above steps, the analytical hybrid simulation can be performed by 

following the steps outlined below: 

 Open the ‘NICA.exe’ file located in the previously created ‘NICA’ folder. In NICA 

command window, the message ‘waiting for connection’ will appear. 

 While keeping NICA command window open, run the numerical OpenSees model that acts 

as the integration module. At this stage, the two models are linked. 
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 At this point, the ‘Press Enter to continue’ message will appear in NICA command window. 

While keeping the integration module OpenSees command prompt open, click on the 

NICA command prompt and press Enter. 

 The analysis will start. 

3.6   DATA POST-PROCESSING 

At the conclusion of the analysis, the response of the substructure module, in terms of force and 

displacement, will be stored in the files ‘Comm_log.log’, and ‘NICA_Data.log’. The former can 

be found in the directory where the OpenSees integration module runs from. The latter can be 

found in the NICA subfolder. 

3.7   RESULTS COMPARISON 

For the example structure, two analyses are carried out. First, the structure as a whole is modeled 

in OpenSees platform (Complete Model). Next, the structure is decomposed into the integrat ion 

module (Frame) and the substructure module (BRB element) for performing the analytical hybrid 

simulation as described above.  

3.7.1 Linear Elastic Hybrid Simulation 

Figure 3. 8 shows the top story lateral displacement time histories, obtained from the complete 

model and from the numerical multi-platform hybrid simulation, in which the structure is designed 

to respond in the linear elastic range. Figure 3. 9 shows the structure hysteretic response when 

subjected to the M6C1 record [Atkinson, 2009], once obtained from the complete model and once 

from the analytical hybrid simulation. 

As expected, and as can be observed from Figure 3. 8 and Figure 3. 9, the results obtained from 

the complete model and the analytical hybrid simulation are identical. 

3.7.2 Nonlinear Hybrid Simulation 

Figure 3. 10 shows the top story lateral displacement time-history, obtained from the complete 

model and from the analytical hybrid simulation, in which the structure is designed to respond in 

the inelastic range. Figure 3. 11 shows the structure hysteretic response when subjected to the 

M6C1 record [Atkinson, 2009], obtained from both the complete model and from the analyt ica l 

hybrid simulation. 

As was the case for the linear elastic analysis, and as can be observed from Figure 3. 10 and Figure 

3. 11, the results obtained from the complete model and the analytical hybrid simulation are 

identical. 
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Figure 3. 8: Story Lateral Displacement TH from the Complete Model (Red), and the Hybrid Model (Blue) 

 

 

Figure 3. 9: Structure Hysteretic Response from the Complete Model (Red), and the Hybrid Model (Black) 
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Figure 3. 10: Story Lateral Displacement TH from the Complete Model (Red), and the Hybrid Model (Blue) 

 

 

Figure 3. 11: Hysteretic Response Curves from the Complete Model (Red), and the Hybrid Model (Blue) 
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CHAPTER 4. ANALYTICAL HYBRID SIMULATION 

OPENSEES – MATLAB  

4.1   INTRODUCTION 

In many applications, researchers may be interested in developing finite element models using 

generic programming languages. The UT-SIM framework has the feature that numerical models 

that have been developed by programming languages such as MATLAB, C++, etc. can be 

integrated into the numerical model as substructure modules. This feature of the UT-SIM 

framework is developed to overcome any potential limitations that may be present in available 

finite element packages.  

In this Chapter the step by step procedure for conducting numerical hybrid simulation by coupling 

an OpenSees [McKenna et al., 2000] model, as the integration module, with a MATLAB script, 

representing the substructure module, is presented.  

4.2   COMMUNICATION OVERVIEW 

Shown in Figure 4. 1, is a schematic illustration on how communication is established in numerica l 

multi-platform hybrid simulations in which an OpenSees model acts as the integration module, 

and the substructural module is represented by a MATLAB script. 

 

Figure 4. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulation with an OpenSees Integration Module and MATLAB Substructure Modules  
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Similar to the previous Chapter, in order to use OpenSees as the main integration module, the same 

OpenSees element termed the SubStructure element is used along with the ‘Kinit.txt’ and 

‘Structufile.txt’ .txt files. 

Contrary to Chapter 3, there is no need to use NICA for externally controlling the substructure 

numerical model, in MATLAB. The substructure, represented by a MATLAB script, can directly 

react to commands from the integration module. The reason is that a script similar to NICA’s is 

implemented in the MATLAB substructure. 

Communication between the SubStructure element, defined in OpenSees, and the MATLAB 

substructure, is enabled by UTNP, which is complied within a Dynamic Link Library, 

DataExchange.dll. 

4.3   EXAMPLE STRUCTURE 

Example Structure I, described in Chapter 2 is used for the simulation. The general background 

and the decomposition of the system into analytical sub-structures is identical to that presented in 

Chapter 3. The only difference in this section is that the response of the BRB specimen is obtained 

from a MATLAB script, as the substructure module, rather than the use of an OpenSees 

substructure in conjunction with NICA. Figure 4. 2 shows the decomposition of the structure into 

the numerical substructures. 

 

 

(a)         (b)             (c) 

Figure 4. 2: Illustration of the Analytical Models – (a) Standalone OpenSees Model, (b) OpenSees Integration 

Module, and (c) Substructure Module Represented in MATLAB 

It must be noted that NICA is a C++ based interface program. As it is possible to have a script 

similar to NICA’s in MATLAB, the use of NICA in this example will not be necessary. The 

required MATLAB script for performing the hybrid simulation is provided in the example files. 

4.4   PROCEDURE FOR PERFORMING ANALYTICAL HYBRID SIMULATION 

4.4.1 General Recommendations 

Prior to starting the numerical hybrid simulation steps, it is recommended to do the following: 

1. Create a folder entitled ‘MATLAB_Substructure’. This is the folder where the MATLAB 

script and the necessary files can be saved. 
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2. Create a folder entitled ‘OpenSees_Integration’. In this folder, the integration module and 

the necessary files will be saved.  

3. It is further recommended to have the complete model located in a directory close to these 

folders. The Complete model can provide a basis for comparing the results of the numerica l 

analysis with the results obtained from the analytical hybrid simulation. 

4.4.2 Software Requirements 

Prior to staring the numerical hybrid simulation steps, it is vital to ensure the following: 

1. Extract the content of the ZIP file ‘HSF.zip’ and place a copy of the ‘HSF’ folder on the 

computer drive on which the operating system is installed. 

2. Ensure that the OpenSees version that is used for the analysis is 2.4.3 (rev 5645). The 

reason for this step is that the SubStructure OpenSees element was developed for OpenSees 

2.4.3 and has not been updated yet. 

3. It is imperative that the two .dll files ‘SubStructure.dll’ and ‘DataExchange.dll’ are placed 

in the folder from where the OpenSees executable file is running, as shown in Figure 4. 3. 

If OpenSees is running from the same folder as the model that represents the n module, 

then the two above-mentioned files must be placed in that folder. The files can be found in 

the folder containing the example files. 

4. It is further necessary that the files ‘DataExchange.dll’ and ‘DataExchange.h’ are placed 

in the folder from which the MATLAB script, representing the substructure module, is 

running. Following the recommended steps outlined in section 4.4.1, the 

‘MATLAB_Substructure’ folder would take the form shown in Figure 4. 4. The MATLAB 

script ‘Server.m’ is a MATLAB file containing the script for linking the substructure to the 

integration module, as well as the numerical model of the substructure module. 

 

Figure 4. 3: Example Location of OpenSees Executable file and the .dll Files  
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Figure 4. 4: Location of the MATLAB Script, Representing the Substructure Module and the Communication 

System with Necessary Files  

4.4.3 OpenSees Modeling (Integration Module) 

The Complete OpenSees model, used for validating the results of the hybrid simulation, is identica l 

to that discussed in Chapter 3. The same holds for the OpenSees script developed as the integrat ion 

module. In addition, all the analysis assumptions are identical to those considered in Chapter 3. 

The OpenSees scripts for the complete model and the integration module are provided in the 

example files. The analysis assumptions (ground motion, structural properties, etc.), are the same 

as those in Chapter 3. The only deviations are: (1) The communication of the integration module 

and the substructure module is carried out by the MATLAB script ‘Server.m’ instead of NICA, 

and, (2) The structural properties of the substructure module is modeled in the MATLAB script 

‘Server.m’. 

Similar to Chapter 3, in order to link the two substructures, the SubStructure element developed 

for OpenSees platform [Huang and Kwon; UT-SIM, 2017], must be defined in the integrat ion 

module, to represent the substructural element. This can be done by the following command: 

 element SubStructure $eleTag –file Structfile.txt –Kinit Kinit.txt; 

where $eleTag is the unique element tag for the structural component treated as the substructure 

module. In the current example, the substructure module is the BRB specimen, which has the 

element tag of 1 in the complete model. For the hybrid simulation, the same tag is used in the 

OpenSees model that act as the integration module. ‘Structfile.txt’ and ‘Kinit.txt’ are the .txt files 

in which the information about the location, boundary conditions, and the initial stiffness of the 

substructure element are specified. These .txt files must be created in the same folder in which the 

OpenSees model, representing the integration module, is located. This is further explained in the 

proceeding section. 

4.4.4 MATLAB Script (Sub-Structure Module) 

The MATLAB script developed to handle the communication between the integration module and 

the substructure module, ‘Server.m’, is provided in the example files. It is important that the values 

of the ‘Kinit’ matrix in the script are updated to values corresponding to the initial global stiffness 

of the substructure element, in global coordinates. The initial global stiffness of the BRB specimen, 
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in the example structure, is determined in Chapter 3. Hence, the ‘Kinit’ matrix in the MATLAB 

script takes the following form: 
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In addition to the stiffness matrix, the port number that is specified in the MATLAB script is of 

importance. The port number that will be specified for the integration module will match the port 

number in the MATLAB script.  

It must be noted that the presented MATLAB script is developed for a linear elastic analysis. 

However, a similar script can be developed for nonlinear dynamic analyses in a completely 

analogous manner.  

4.4.5 Procedure for linking the two Substructures 

After creating the OpenSees integration module and the MATLAB script, linking the two 

substructures can be done using the following procedure: 

1. If OpenSees is running from the folder in which the integration module is located, it must 

be ensured that the previously mentioned .dll files, ‘SubStructure.dll’ and 

‘DataExchange.dll’ are placed in the folder. 

2. In the folder where the integration module is located, create a .txt file titled ‘Kinit.txt’, 

which contains the initial stiffness of the substructure module, in the global coordinates. 

The integration module reads the initial stiffness of the substructure module from this .txt 

file for starting the analysis, solving the eigenvalue problem and reporting the periods of 

the structure. In addition, the displacement commands that are imposed on the substructure 

module are determined according to the specified stiffness in the ‘Kinit.txt’ file. The init ia l 

global stiffness of the substructure module, for the current example, is determined in 

Chapter 3 and presented in Section 4.4.4. Hence, the ‘Kinit.txt’ file for the example 

structure will be as shown in Figure 4. 5. 

3. In the same folder where the integration module is located, a .txt file ‘Structfile.txt’ must 

be created. The interface nodes and their DOFs, in the integration module, will be specified 

in this file. Figure 4. 6 shows the ‘Structfile.txt’ file for the example structure. 
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Figure 4. 5: ‘Kinit’ File for the Example Structure 

The structure under consideration is a 2-dimensional problem, and hence, Ndm is specified as 2. 

It must be ensured that the port number that is specified here matches the port number specified in 

the MATLAB script (refer to the MATLAB script in the example files). 

 

Figure 4. 6: ‘Structfile.txt’ File for the Example Structure 



39 

In the example structure the BRB element, considered as the substructure module, is connected to 

nodes 1 and 4 (Figure 3. 5 in Chapter 3). Therefore, ‘NumNode’ is set equal to 2 in the 

‘Structfile.txt’, identifying that the slave substructure is connected to the master model through 2 

nodes, specified as nodes 1 and 4. Further, it is indicated that each node has three DOFs by setting 

‘NumDOFs’ equal to 3. The rest of the inputs are self-explanatory.  

4.4.6 Hybrid Simulation Execution 

Upon completion of the above steps, the analytical hybrid simulation can be performed by 

following the steps outlined below: 

 Open the ‘Server.m’ MATLAB script which contains the structural properties of the slave 

substructure and handles the communication between the integration module and the 

substructure module.  

 Run the MATLAB script. Wait until the program gives the warning ‘loadlibrary(…)’. 

 While keeping the MATLAB script window open, run the OpenSees model that acts as the 

integration module. At this stage, the two models are linked. 

 No further actions are required and the analysis will start. 

4.5  DATA POST-PROCESSING 

Upon the conclusion of the analysis, the response of the substructure element, in terms of force 

and displacement, will be stored in the file ‘Comm_log.log’. This file can be found in the folder 

containing the integration module. 

4.6   RESULTS COMPARISON 

For the example structure, two analyses are carried out. First, the structure as a whole is modeled 

in OpenSees platform (Complete Model). Next, the structure is decomposed into the integrat ion 

module (Frame) and the substructure module (BRB element) for performing the analytical hybrid 

simulation as described above. In the present Chapter, only a linear hybrid simulation is carried 

out to outline the procedure. A nonlinear hybrid simulation can be carried out in a completely 

analogous manner, by adjusting the MATLAB script accordingly. 

Figure 4. 7 shows the top story lateral displacement time histories, obtained from the complete 

model and from the analytical hybrid simulation, in which the structure is designed to respond in 

the linear elastic range. Figure 4. 8 shows the structure hysteretic response when subjected to the 

M6C1 record [Atkinson, 2009], obtained from both the complete model and from the analyt ica l 

hybrid simulation. 

As expected, and as can be observed from Figure 4. 7 and Figure 4. 8, the results obtained from 

the complete model and the analytical hybrid simulation are identical. 
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Figure 4. 7: Story Lateral Displacement TH from the Complete Model (Red), and the Hybrid Model (Blue) 

 

 

Figure 4. 8: Structure Hysteretic Response from the Complete Model (Red), and the Hybrid Model (Black) 
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CHAPTER 5. ANALYTICAL HYBRID SIMULATION 

OPENSEES – C++ 

5.1   INTRODUCTION 

As an extension of the previous Chapter, in this Chapter, the step by step procedure for conducting 

analytical hybrid simulation by coupling an OpenSees [McKenna et al., 2000] model, as the 

integration module, with a C++ script, representing the substructure module, is presented.  

5.2   COMMUNICATION OVERVIEW 

Shown in Figure 5. 1, is a schematic illustration on how communication is established in numerica l 

multi-platform hybrid simulations in which an OpenSees model acts as the integration module, 

and the substructural module is represented by a C++ script. 

 

Figure 5. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulation with an OpenSees Integration Module and C++ Substructure Modules  

Similar to previous Chapters, in order to use OpenSees as the main integration module, the same 

OpenSees element termed as SubStructure element is used along with the ‘Kinit.txt’ and 

‘Structufile.txt’ .txt files. 

Contrary to Chapter 3, there is no need to use NICA for externally controlling the substructure 

analytical model, in C++. The substructure, represented by the C++ script, can directly react to 
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commands from the integration module. The reason is that a script similar to NICA’s is 

implemented in the C++ substructure. 

Communication between the SubStructure element, defined in the OpenSees integration module, 

and the C++ substructure, is enabled by UTNP, which is complied within a Dynamic Link Library, 

DataExchange.dll. 

5.3   EXAMPLE STRUCTURE 

Example Structure I, described in Chapter 2 is used for the simulation. The general background 

and the decomposition of the system into numerical substructures is identical to that presented in 

Chapter 3. The only difference in this section is that the response of the BRB specimen is obtained 

from a C++ script, as the substructure module, rather than the use of an OpenSees substructure in 

conjunction with NICA. Figure 5. 2 shows the decomposition of the structure into the analyt ica l 

substructures. 

 

 

(a)          (b)             (c) 

Figure 5. 2: Illustration of the Analytical Models – (a) Standalone OpenSees Model, (b) OpenSees Integration 

Module, and (c) Substructure Module Represented in C++ 

It must be noted that NICA is a C++ based interface program. As it is possible to include a script 

similar to NICA’s in the sub-structure C++ script, the use of NICA in this example will not be 

necessary. The required C++ script for performing the multi-platform analytical hybrid simula t ion 

is provided in the example files. 

5.4   PROCEDURE FOR PERFORMING ANALYTICAL HYBRID SIMULATIONS 

5.4.1 General Recommendations 

Prior to starting the analytical hybrid simulation steps, it is recommended to do the following: 

1. Create a folder entitled ‘CPP_Substructure’. This is the folder where the C++ script and 

the necessary files for compiling the code can be saved. 

2. Create a folder entitled ‘OpenSees_Integration’. In this folder, the integration module and 

the necessary files will be saved.  
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3. It is further recommended to have the complete model located in a directory close to these 

folders. The Complete model can provide a basis for comparing the results of the numerica l 

analysis with the results obtained from the analytical hybrid simulation. 

5.4.2 Software Requirements 

Prior to starting the analytical hybrid simulation steps, it is vital to ensure the following: 

1. Extract the content of the ZIP file ‘HSF.zip’ and place a copy of the ‘HSF’ folder on the 

computer drive on which the operating system is installed. 

2. Ensure that the OpenSees version that is used for the analysis is 2.4.3 (rev 5645). The 

reason for this step is that the SubStructure OpenSees element was developed for OpenSees 

2.4.3 and has not been updated yet. 

3. It is imperative that the two .dll files ‘SubStructure.dll’ and ‘DataExchange.dll’ are placed 

in the folder from where the OpenSees executable file is running, as shown in Figure 5. 3. 

If OpenSees is running from the same folder as the OpenSees integration module, then the 

two above-mentioned files must be placed in that folder. The files can be found in the folder 

containing the example files. 

4. It is further necessary that the files ‘DataExchange.dll’ and ‘DataExchange.h’ are placed 

in the folder from which the C++ script, representing the substructure module, is running. 

Following the recommended steps outlined in section 5.4.1, the ‘CPP_Substructure’ folder 

would take the form shown in Figure 5. 4. The file ‘Server.cpp’ is a C++ script file 

containing the code for linking the substructure to the integration module, as well as the 

properties of the substructure module. The ‘Server’ folder contains the necessary files for 

compiling the C++ code into an executable file. The ‘Server.exe’ file is the executable file 

that is created after compiling the C++ code, using visual studio. All these files can be 

found in the example files. The procedure for compiling the C++ script is explained in the 

upcoming sections.  

 

Figure 5. 3: Example Location of the OpenSees Executable File and the.dll Files  
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Figure 5. 4: Location of the C++ Script, Representing the Substructure Module and the Communication System with 

Necessary Files 

5.4.3 OpenSees Modeling (Integration Module) 

The Complete OpenSees model, used for validating the results of the hybrid simulation, is identica l 

to that presented in Chapter 3. The same holds for the OpenSees script developed as the integrat ion 

module. In addition, all the analysis assumptions are identical to those considered in Chapter 3. 

The analysis assumptions (ground motion, structural properties, etc.), can be found in Chapter 3. 

The only deviations are: (1) The communication of the integration module and the substructure 

module is carried out by the C++ script ‘Server.cpp’, instead of NICA, and (2) The structural 

properties of the substructure module is modeled in the C++ script ‘Server.cpp’. 

Similar to Chapter 3, in order to link the two substructures, the SubStructure element developed 

for OpenSees platform, must be defined in the integration module, to represent the substructure 

element. This can be done by the following command: 

 element SubStructure $eleTag –file Structfile.txt –Kinit Kinit.txt; 

where $eleTag is the unique element tag for the structural component treated as the substructure 

module. In the current example, the substructure module is the BRB specimen, which has the 

element tag of 1 in the complete model. The same tag is used in the OpenSees model, representing 

the integration module. ‘Structfile.txt’ and ‘Kinit.txt’ are the .txt files in which the information 

about the location, boundary conditions, and the initial stiffness of the substructure module are 

specified. These .txt files must be created in the same folder in which the OpenSees model, 

representing the integration module, is located. This is further explained in the proceeding section.  

5.4.4 C++ Script (Sub-Structure Module) 

The C++ script developed to handle the communication between the integration module and the 

substructure module, ‘Server.cpp’, is provided in the example files. It is important that the values 

of the ‘Kinit’ matrix in the script are updated to values corresponding to the initial global stiffness 

of the substructure element, in global coordinates. The initial global stiffness of the BRB specimen, 

in the example structure, is determined in Chapter 3. Hence, the ‘Kinit’ matrix in the C++ script 

takes the following form: 
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In addition to the stiffness matrix, the port number that is specified in the C++ script is of 

importance. The port number that will be specified for the integration module will match the port 

number in the C++ script. 

It must be noted that the presented C++ script is developed for linear elastic analyses. However, a 

similar script can be developed for nonlinear dynamic analyses in a completely analogous manner.  

5.4.5 Procedure for linking the two Substructures 

After creating the OpenSees integration module and the C++ script, linking the two substructures 

can be done using the following procedure: 

1. If OpenSees is running from the folder in which the integration module is located, ensure 

that the previously mentioned .dll files, ‘SubStructure.dll’ and ‘DataExchange.dll’ are 

placed in the folder. 

2. In the folder where the integration module is located, create a .txt file titled ‘Kinit.txt’, 

which contains the initial stiffness of the substructure module, in the global coordinates. 

The integration module reads the initial stiffness of the substructure module from this .txt 

file for starting the analysis, solving the eigenvalue problem and reporting the periods of 

the structure. In addition, the displacement commands that are imposed on the substructure 

module are determined according to the specified stiffness in the ‘Kinit.txt’ file. The init ia l 

global stiffness of the substructure module, for the current example, is determined in 

Chapter 3 and presented in Section 5.4.4. Hence, the ‘Kinit.txt’ file for the example 

structure will be as shown in Figure 5. 5. 

 

Figure 5. 5: ‘Kinit.txt’ File for the Example Structure 
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3. In the same folder where the OpenSees model, representing the integration module, is 

located a txt file ‘Structfile.txt’ must be created. The interface nodes and their DOFs, as 

defined in the integration module, will be specified in this file. Figure 5. 6 shows the 

‘Structfile.txt’ file for the example structure. 

 

Figure 5. 6: ‘Structfile.txt’ File for the Example Structure 

The structure under consideration is a 2-dimensional problem, and hence, Ndm is specified as 2. 

It must be ensured that the port number that is specified here matches the port number specified in 

the C++ script (refer to the C++ script in the example files). 

In the example structure the BRB element, considered as the substructure module, is connected to 

nodes 1 and 4 (Figure 3.5 in Chapter 3). Therefore, ‘NumNode’ is set equal to 2 in the 
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‘Structfile.txt’, identifying that the substructure module is connected to the integration module 

through 2 nodes, specified as nodes 1 and 4. Further, it is indicated that each node has three DOFs 

by setting ‘NumDOFs’ equal to 3. The rest of the inputs are self-explanatory.  

5.4.6 Compiling the C++ Script into an Executable File 

After finalizing the C++ script, the script must be compiled into an executable file in order to run 

the analysis. This can be done by using Microsoft Visual Studio Professional. The procedure for 

compiling a C++ script, using Microsoft Visual Studio Professional 2012 is outlined below in 

windows 8: 

1. First, it must be ensured that Kinit and the port number are adjusted accordingly, in the 

C++ script. 

2. It must be noted that the ‘DataExchange.dll’ file is a 64-bit file. Hence, it is of importance 

that the C++ script is compiled in 64-bit as well. 

3. Open the ‘Server.cpp’ file with Visual Studio Professional 2012. 

4. Navigate through File > New > Project. 

5. Activate Visual C++ template from the Templates tab. 

6. Activate Win32 Console Application. 

7. Deselect the ‘Create directory for solution’ option. 

8. Click on OK. 

9. In the ‘Welcome to the Win32 Application Wizard’, click on Next. 

10. In the ‘Application Settings’ window, select the ‘Empty project’ option. Click on Finish. 

11. In the Solution Explorer, right-click on the ‘created project’ and select ‘properties’. 

12. Choose the ‘configuration manager’ and open the configuration manager dialog box. 

13. Use the dropdown list for the ‘Active solution platform’, and select ‘new’ to create a new 

solution platform dialog box. 

14. In the ‘Type or select the new platform’, select a 64-bit platform. 

15. After clicking on OK, the platform that was created (x64) will appear in the ‘Active 

solution platform’. 

16. Select Close. 

17. Select OK. 

18. Right-click on the Source Files, and select Add > Existing Item. 

19. Browse, locate and select the Server.cpp script. 
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20. Select the ‘Build’ tab and select ‘Build Solution’. 

21. The .exe file will be stored in a default location that will be shown at the bottom of the 

screen. 

22. Copy the .exe file to a convenient location, preferably close to the OpenSees integrat ion 

module. 

5.4.7 Hybrid Simulation Execution 

Upon completion of the above steps, the analytical hybrid simulation can be performed by 

following the steps outlined below: 

 Run the ‘Server.exe’ executable file that is located in the sub-structure folder. The message 

‘waiting for connection’ will appear. 

 Run the OpenSees integration module. 

 No further actions are required and the analysis will start. 

5.5   DATA POST-PROCESSING 

Upon the conclusion of the analysis, the response of the specimen, in terms of force and 

displacement, will be restored in the file ‘Comm_log.log’. This file can be found in the folder 

containing the integration module. 

5.6   RESULTS COMPARISON 

For the example structure, two analyses are carried out. First, the structure as a whole is modeled 

in OpenSees platform (Complete Model). Next, the structure is decomposed into the integrat ion 

module (Frame) and the substructure module (BRB element) for performing the analytical hybrid 

simulation as described above. In this Chapter, only a linear hybrid simulation is carried out to 

outline the procedure. A nonlinear hybrid simulation can be carried out in a completely analogous 

manner, by adjusting the C++ script accordingly. 

Figure 5. 7 shows the top story lateral displacement time histories, obtained from the complete 

model and from the analytical hybrid simulation, in which the structure is designed to respond in 

the linear elastic range. Figure 5. 8 shows the structure hysteretic response when subjected to the 

M6C1 record [Atkinson, 2009], obtained from both the complete model and from the analyt ica l 

hybrid simulation. 

As expected, and as can be observed from Figure 5. 7 and Figure 5. 8, the results obtained from 

the complete model and the analytical hybrid simulation are identical. 
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Figure 5. 7: Story Lateral Displacement TH from the Complete Model (Red), and the Hybrid Model (Blue) 

 

 

Figure 5. 8: Structure Hysteretic Response from the Complete Model (Red), and the Hybrid Model (Black) 
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CHAPTER 6. ANALYTICAL HYBRID SIMULATION 

ABAQUS – ABAQUS  

6.1   INTRODUCTION 

In this Chapter the step by step procedure for conducting analytical hybrid simulation by coupling 

an ABAQUS [2013] model, as the integration module, with another ABAQUS model, representing 

the substructure module, is presented.  

6.2   COMMUNICATION OVERVIEW 

Similar to the SubStructure element defined for OpenSees, in order to use ABAQUS as the 

integration module, a User Element (UEL) has been developed [Huang and Kwon; UT-SIM, 2017] 

for ABAQUS. There are two alternative methods for integrating ABAQUS as the substructure 

module, in a multi-platform hybrid simulation.  

In one approach, the interface program NICA, discussed in Chapter 1, can be used. The procedure 

will be similar to that discussed in Chapter 3. A schematic illustration of the communication and 

data exchange architecture in such a case is presented in Figure 6. 1. 

 

Figure 6. 1: Illustration of Communication Architecture in Numerical Multi-Platform Hybrid Simulation with an 

ABAQUS Integration Module and ABAQUS Substructure Modules, with Using NICA  

In the other approach, a UEL for ABAUQS substructures has been developed to facilitate direct 

communication between the integration module and the ABAQUS substructure module. Hence, 

using NICA will not be necessary. A schematic illustration of the communication and data 

exchange architecture in such a case is presented in Figure 6. 2. 
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Figure 6. 2: Illustration of Communication Architecture in Numerical Multi-Platform Hybrid Simulation with an 

ABAQUS Integration Module and ABAQUS Substructure Modules, without Using NICA  

Communication between the UEL for the integration module and NICA (Figure 6. 1), or UEL for 

the substructure module (Figure 6. 2), is enabled by UTNP which is complied within a Dynamic 

Link Library, DataExchange.dll. 

In the current example, the second communication scheme is adopted. 

6.3  EXAMPLE STRUCTURE 

Example Structure I, described in Chapter 2 is used for the simulation. The general background 

and the decomposition of the system into analytical substructures is identical to that presented in 

Chapter 3. The difference in this section is that the BRB specimen is modeled using a solid element 

in ABAQUS, as the substructure module. In addition, the integration module is modeled in 

ABAQUS, using frame elements. Figure 6. 3 shows the decomposition of the structure into the 

analytical substructures. 

 

(a)            (b)                 (c) 

Figure 6. 3: Illustration of the Analytical Models – (a) Standalone ABAQUS Model, (b) ABAQUS Integration 

Module Using Frame Elements, and (c) ABAQUS Substructure Module Using Solid Elements  

6.4  ASSUMPTIONS/ANALYSIS 

A push over analysis is carried out on the example structure. The pushover analysis is first carried 

out on a standalone analytical model of the structure as a whole, in ABAQUS, using frame 

elements. Figure 6. 4 shows a screenshot of the standalone ABAQUS model of the structure with 

frame elements, in extruded view. 
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Next, the structure is decomposed into two analytical substructures, modeled in ABAQUS, and a 

push over analysis is carried out on the multi-platform model. 

The frame substructure is modeled in ABAQUS using frame elements, which acts as the 

integration module. Figure 6. 5 (a) shows a screenshot of the integration module modeled in 

ABAQUS using frame elements. The BRB is modeled in ABAQUS, which acts as the substructure 

module. Solid elements are used for modeling the BRB specimen in ABAQUS. C3D8R 8-node 

linear brick elements with reduced integration elements are used as the mesh elements. Figure 6. 

5 (b) shows the substructural module, as modeled in ABAQUS. 

 
 

 
(a) 

 
(b) 

Figure 6. 4: Standalone ABAQUS model of the Structure, Using ABAQUS– (a) 3D View, (b) 2D View 

 

+ 

 

(a)  (b) 

Figure 6. 5: Analytical Substructures – (a) ABAQUS Integration Module Using Frame Elements, and (b) ABAQUS 

Substructural Module Using Solid Elements  

Since the model is created for demonstration purposes, a mesh-sensitivity analysis is not carried 

out. The element is modeled such that it would yield in both tension and compression, as expected 

from BRB elements.  
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In all models, a simple bilinear material behavior is assumed for the BRB steel material. The yield 

strength is assumed as 300 MPa, as expected for 300W steel. The post-yield modulus is assumed 

to be 1% of the elastic material modulus. The assumed stress-strain response is shown in Figure 6. 

6. A linear elastic behavior is assumed for the beam and the columns, as they are not expected to 

undergo nonlinear deformations. 

 

Figure 6. 6: Stress-Strain Response of the Buckling-Restrained Braced Steel Material 

6.5  ACCESSING ABAQUS SUBROUTINE 

Hybrid simulation and communication with ABAQUS substructures is carried out through 

ABAQUS subroutines. Therefore, in order to facilitate hybrid simulations with ABAQUS 

substructures, access to ABAQUS subroutines must be established. In order to do this, ABAQUS, 

must be linked with Visual Studio and Intel Composer XE.  

In this section, the procedure for accessing ABAQUS subroutines, by linking ABAQUS 6.13-1, 

Microsoft Visual Studio 2012, and Intel Composer XE 2013, is outlined. Note that the version of 

the programs may not be necessary, but they are recommended as they have been tested.  

1. Have ABAQUS 6.13-1 installed on the operating system. 

2. Have Microsoft Visual Studio 2012 installed on the operating system. 

3. Have Intel Composer XE 2013 installed on the operating system. 

4. Locate the files ‘ifort.exe’, and ‘Ifortvars.bat’ on the operating system. Their typical 

locations are provided below: 

 ‘ifort.exe’ Location: C:\Program Files (x86)\Intel\Composer XE 2013\bin\inte l64 

 ‘Ifortvars.bat’ Location: C:\Program Files (x86)\Intel\Composer XE 2013\bin 
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5. Have the location of the above-mentioned files saved in .txt files, located close to where 

all the files and folders for the simulation will be restored. 

6. Open the Control Panel window and go to Control Panel > All Control Panel Items > 

System. Alternatively, right-click on the ‘This PC’ main folder on the system, and select 

properties. 

7. In the System window click on ‘Advanced system settings’ menu.  

8. In the ‘Advanced’ tab, click on the ‘Environment Variables’ icon. 

9. In the User variables, select Path. It is required to add the locations for ‘ifort.exe’, and 

‘Ifortvars.bat’ to the Path.  

10. If Path is not in the User Variable items, click on New and add Path as the Variable name. 

In the Variable Value copy/paste the location of ‘ifort.exe’ and ‘Ifortvars.bat’, separated 

with a semicolon. If the Path is already present, click on Path, then Edit, and add the 

location of ‘ifort.exe’, and ‘Ifortvars.bat’, separated with a semicolon to the existing ones. 

Then click on OK. 

11. Go to the Command directory in the ABAQUS folder on the operating system. This is 

typically located at ‘C:\SIMULIA\Abaqus\Commands’. 

12. Open the file ‘abq6131.bat’, using a note pad or any txt editor. 

13. After the line ‘@echo off’, add the following line: ‘@call ifortvars.bat intel64 vs2012’. 

Save and close the file. Figure 6. 7 shows an example of how the ‘abq6131.bat’ file should 

look like after the edit. 

 

Figure 6. 7: Screenshot of the Edited ‘abq6131.bat’ File 

14. At this stage, ABAQUS is linked with Visual Studio and Intel Composer XE 2013. It is 

recommended to check if the procedure is carried out properly. This can be done by the 

following steps: 

A. Open a command window. This can be done by opening the start menu and typing 

‘cmd’. 
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B. Type ‘abaqus –verify’ and enter. The command prompt will generate a list of 

commands that can be used.  

C. In the current example, the aim is to verify the ‘User Subroutine’. Therefore, use 

the command ‘abq6131 verify –user_std’. Note that the term ‘abq6131’ could be 

different in other systems. The specific term for the system is generated in the 

command prompt after step B. 

Important Note: It is imperative that the ‘Microsoft Parallel Processing MPI Interface’ version that 

is installed on the operating system is compatible with the installed ABAQUS. Typically, the 

ABAQUS installation is accompanied with the compatible version. For instance, in the current 

example where ABAQUS 6.13 is used, the compatible MPI version is ‘mpi_3.0x64.msi’. 

Therefore, the existing MPI versions on the system were uninstalled and replaced with the 

compatible one. A better alternative is to check the MPI version that is installed on the system, 

prior to installing ABAQUS. If the version is not compatible, uninstall it. This way, the compatible 

version will be automatically installed with ABAQUS. 

D. At this stage, the ‘…PASS’ message will be generated in the command prompt, 

indicating that user subroutine is accessible now, as shown in Figure 6. 8. 

 

Figure 6. 8: PASS Message as Observed in the Command Prompt  

6.6  ADJUSTING THE DATA EXCHANGE LIBRARY FOR ABAQUS 

In order to perform analytical hybrid simulations, using ABAQUS substructures, it is essential to 

adjust the data exchange library for ABAQUS. This can be done, using the following steps: 

1. The required files for this procedure are included in the example files. The specific files 

are ‘DataExchange.dll’, ‘DataExchange.h’, and ‘DataExchange.lib’. 
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2. Create a copy of the files ‘DataExchange.dll’, ‘DataExchange.h’, and ‘DataExchange.lib’, 

in the ABAQUS bin folder on the system. The typical location of this folder is 

‘C:\SIMULIA\Abaqus\6.13-1\code\bin’. 

3. Locate file ‘abaqus_v6.env’ at ‘C:\SIMULIA\Abaqus\6.13-1\SMA\site’. Open 

‘abaqus_v6.env’ with a notepad or any txt editor. 

4. Scroll down to find the ‘link_sl’ variable. In the last line, add the address for the newly 

created DataExchange.lb file in step 2 as ‘C:\SIMULIA\Abaqus\6.13-

1\code\bin\DataExchange.lib’. Single quotation marks must be used. In addition, it must 

be noted that for ABAQUS, double backslashes (\\) should be used rather than a single 

backslash (\). Therefore, the added address would be ‘'C:\\SIMULIA\\Abaqus\\6.13-

1\\code\\bin\\DataExchange.lib'’. The result of this procedure is shown in Figure 6. 9: 

 

Figure 6. 9: The Result of the Procedure Described in Step 4 

5. Save and close the txt file. 

6. Upon the completion of this procedure, execution of hybrid simulation with ABAQUS as 

one of the analytical substructures will be possible. 

6.7   PROCEDURE FOR PERFORMING HYBRID SIMULATION USING ABAQUS SUBSTRUCTURES  

In order to use ABAQUS models as analytical substructures, first the ABAQUS models must be 

created. This can be done using the ABAQUS visual interface. Afterwards, the procedure provided 

in Section 6.7.1, and the procedure provided in Section 6.7.2 must be followed for the ABAQUS 

integration and substructure modules, respectively. Upon the completion of these steps, use of 

ABAQUS models as numerical integration and substructure modules will be possible. 

The procedure in the following sections are described with the aid of the provided example in this 

Chapter. For new analytical hybrid simulations using ABAQUS substructures, the same 

procedures can be used in a completely analogous manner. Therefore, before following the steps 

provided below, download the example folder. In the example folder, the subfolder ‘AbaInt’ 

contains the ABAQUS integration module files, and the subfolder ‘AbaSub’ contains the 

ABAQUS substructure module files. 

6.7.1 Procedure Required for Using ABAQUS Models as Integration Modules 

1. Create the ABAQUS model that acts as the integration module, using the ABAQUS visual 

interface. In the example folder, the subfolder ‘ABQ-Integration’ contains the origina l 
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ABAQUS model that was created within the ABAQUS visual interface to represent the 

Integration module. 

2. As discussed previously, analytical substructuring using ABAQUS is carried out by using 

ABAQUS subroutines. The subroutines for ABAQUS substructuring that are used in UT-

SIM framework are a modified version of the ones developed by Shellenberg et al. [2008; 

2009]. Folder ‘AbaInt’ includes the subroutine script for the integration module, used for 

this example. The file ‘IntSub.for’ is the subroutine script in the current example. Note that 

in mac operating systems and Linux, the file takes the form ‘ÌntSub.f̀ ’. The same 

subroutine file can be used for other examples and must be stored in the same folder from 

which the ABAQUS integration module is running from. 

3. Note that the only information that may require editing in the ‘IntSub.for’ file is the IP 

number (line 355 in integration subroutine). The IP number is only adjusted when a hybrid 

simulation is carried out using several operating systems. 

4. Upon completion of the FE model, save the model to a convenient location close to the 

example files. 

5. After saving the file, create a job. 

6. Right-click on the created job and select ‘Write Input’. 

7. An input file, ‘job1.inp’ will be generated in the directory where the ABAQUS file is 

stored.  

8. Afterwards, the input file must be modified to match the required format for ABAQUS 

sub-structuring. A template for the required format is provided in the example files termed 

‘Abq Intstructure Template’. Input file ‘AbaInt.inp’, in the ‘AbaInt’ folder, shows the 

modified version of the original input file ‘job1.inp’, matching the template. 

9. In order to facilitate making the input file for the hybrid simulation, relevant information 

from the original input file, from the original model, can be transferred to the template 

input file. This can be done for almost all sections. However, data for the ‘User Element’ 

Section in the formatted input file (line 26 in the example file), must be specified manually. 

Information required in the ‘User Element’ Section, are used for communication between 

substructure models in the hybrid simulation, and are not provided in the original script. 

10. The ‘User Element’ Section, for the current example, is shown in Figure 6. 10. The 

following parameters must be specified: 

A. Keep Type = U1 in its default form. 

B. Specify the number of nodes of the substructural element. Note that in our example, we 

have 2 nodes (the BRB specimen), hence, NODES = 2. 
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C. Specify the total number of coordinate components required to locate all nodes of the 

Substructure. In the present example, the substructure has two nodes, and the location 

of each node is described by (X,Y). Hence, the total number of coordinate components 

becomes 4 (COORDINATES=4). 

D. Define the number of properties that can be specified for the substructure element. As 

can be viewed in the subroutine file, there are 6 properties that are defined in the script. 

Hence, the value of 6 must be specified for the number of properties (PROPERTIES = 

6). 

 

Figure 6. 10: ‘User Element’ Section Inputs for the Example Structure ABAQUS Integration Module  

E. The number next to ‘VARIABLES’ indicates the number of variables that are 

communicated in the data exchange. In this case we have two nodes. Each node has 

two displacements, one rotation, two force components, and one moment component, 

making a total of 6 variables at each node, and a total of 12 variables for all nodes. In 

essence, variable can be specified as number of nodes multiplied by the number of 

degrees of freedom, multiplied by 2. 

F. The numbers specified in the next line, indicates the active DOFs for data exchange 

and data communication. In the current example, the structure is analyzed in two 

dimensions. Therefore, forces and displacements along X, and Y, as well as rotation 

about Z are active. The active DOFs are, therefore, 1,2, and 6, representing ∆X, ∆Y, and 

θZ. 

G. In line 30, the substructure element is defined. In essence, the element is defined in 

ABAQUS, in a similar way as before. However, the type here is specified as U1 which 

indicates that the element is representing the substructural element. Note that in this 

example, the element number is specified as 999, and it is defined to extend between 

nodes 1 and 4. Note that the element set is labeled ‘user’ in this example. The set will 

be used for assigning additional properties to the element. 

H. After these inputs, the information for communication and data exchange (starting from 

line 33 in the current example) must be specified. In order to understand the specified 
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values, consider the subroutine script ‘IntSub.for’. Figure 6. 11 shows a screenshot of 

a portion of the subroutine script, corresponding to this portion of the integrat ion 

module input file. The following information must be specified: 

 The first number must specify the port number (8090 in the input file). 

 The second number must specify the communication protocol type (in all examples 

we use 1, which is indicative of TCP/IP. 

 The third number in the input file, specifies whether the substructure is represented  

by an analytical model or a physical specimen. Further, it is indicative of what 

structural analysis program is used for analytical hybrid simulation. Note that 1, 2, 

3, 4 values indicate analytical substructures using OpenSees, Zeus_NL, ABAQUS, 

and VecTor2, respectively. A value of 6 means that the substructure is represented 

by a physical specimen. 

 The fourth number describes the type of loading in the simulation (i.e. 1 for Ramp 

hold, 2 for continuous, 3 for real time and 4 for Software.) 

 The fifth number presents the desired precision in the FE analysis. 1 is used for 

single precision, where 2 is used for double precision. Note that in the current 

example, a double precision is used. 

 As the final information required for the simulation, the substructure elastic 

stiffness matrix must be specified. The stiffness matrix for the brace element is the 

same as that determined in Chapter 3. The values are defined in N/mm, to stay 

consistent with the unit system used in the integration module. 

I. This concludes the steps required to generate the input file for ABAQUS models, as 

the integration module in hybrid simulations. 

 

Figure 6. 11: ‘User Element’ Section Inputs for the Example Structure ABAQUS Integration Module  

6.7.2 Procedure Required for ABAQUS Models as Substructure Modules 

1. Create the ABAQUS model that acts as the substructure module, using the ABAQUS visua l 

interface. In the example folder, the subfolder ‘ABQ-Sub’ contains the original ABAQUS 
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model that was created within the ABAQUS visual interface to represent the integrat ion 

module. 

2. If the model is constructed using ABAQUS visual interface, it is recommended that the 

model is oriented in Global coordinates. This way, the data generated for the substructure 

in the ‘Part’ section of the input file will be in the global coordinates. If the substructure is 

oriented in the local coordinates, then coordinate transformations, using the transformation 

expressions provided in the Assembly section of the original input file, are inevitable.  

3. ABAQUS models used as analytical substructures require a subroutine file. The subroutine 

file must be included in the folder from which the substructure model is running from. In 

the example files, the file ‘SubSub.for’, located in subfolder ‘AbaSub’ is the subroutine 

file for ABAQUS substructures and can be used for other examples. 

4. Note that the only information that may require editing in the ‘SubSub.for’ file is the IP 

number (line 369 in substructure subroutine). The IP number is only adjusted when a hybrid 

simulation is carried out using several operating systems. 

5. For the substructure model, the modification of the input file for the hybrid simulation can 

be done in a similar manner as the integration model.  

6. In the current example, the substructure model is a solid element and is modeled with more 

information (elements, nodes, etc.). Hence, a source file ‘BRB_member.dat’ is used to store 

all the node data and element connectivities taken from the original input file. In the 

modified input file, this file is loaded. The rest of the model definition in the formatted 

input file can be obtained from the original input file, similar to the above. A template for 

the required format is provided in the example files termed ‘Abq Substructure Template’ 

 

Figure 6. 12: Data Exchange Inputs for the Example Structure Substructure Module 
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7. The information in the Data Exchange section are required for communication between the 

substructure and the integration module (line 22 in the example substructure input file), 

and are not provided by the original input file. Figure 6. 12 shows the information specified 

in the ‘Data Exchange’ section, for the example substructure. 

8. As can be seen in Figure 6. 12, in the ‘Data Exchange’ section, the following must be 

specified: 

A. The specified nodes are the interface nodes through which the substructure is linked 

with the integration model. The 3 numbers next to each node represent the coordinates 

of that node in the substructure model. 

B. Type, Nodes, coordinates, Properties, and variables have the same definitions as those 

given in Section 6.7.1. 

C. Note that in the substructure, similar to the integration module, an element is defined 

with Type U1, as the adapter element. Large node numbers and element number are 

used to ensure none of the previously defined nodes, or elements are overwritten. It is 

imperative that the adapter nodes in the substructure follow the same sequence as the 

nodes in the integration model. For instance, the nodes in the integration model were 

4 (0,0) and 1 (6000,3300). Therefore, the sequence of nodes is 4 and 1. Hence, in the 

substructure script the sequence of nodes 9998 (0,0) and 9999 (6000,3300) is defined 

as 9998 and 9999. Figure 6. 13 shows the node numbers as defined in the analytica l 

models. 

 

                    (a)      (b)                 (c) 

Figure 6. 13: Node Numbering Scheme in the Analytical Models – (a) Standalone Model, (b) Integration Module, 

and (c) Substructure Module 

D. In the properties, the port number specified must match that specified in the integrat ion 

module. 

E. Second number indicates that the stiffness is input in the integration model. This 

number does not need changing. 

F. Input the third number as a large value, compared to the stiffness of the substructure 

(i.e. 12 times larger). This ensures that the stiffness of the adapter elements is much 

larger than the substructure itself. Hence, the stiffness of the whole system is controlled 

by the stiffness of the substructure. 
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G. The rest of the script is set up to constrain the nodes on each end of the substructure 

into the single node that acts as the adapter node 

H. After that, the boundary conditions are specified.  

9. Upon the completion of these steps, ABAQUS models can be used as integration and 

substructure modules, in analytical hybrid simulations. 

6.8   HYBRID SIMULATION EXECUTION 

Prior to starting the hybrid simulation, locate the ‘run.bat’ file in the substructure and integrat ion 

module folders. Open the ‘run.bat’ file using a notepad editor. Change the text to have: 

abaqus job=AbqSub user=SubSub interactive 

where ‘AbqSub’ is the name of the substructure input file and ‘SubSub’ is the name of the 

subroutine file for the substructure. 

abaqus job=AbaInt user=IntSub interactive 

where ‘AbaInt’ is the name of the integration input file and ‘IntSub’ is the name of the subroutine 

file for the integration module. 

After the above step, using the following steps, the analytical hybrid simulation can be executed: 

1. Locate the folder in which the substructure input, subroutine and the run.bat files are 

located. 

2. Open a command window in this folder (Shift+right-click – Select ‘Open Command 

Window’) 

3. Type run.bat to run the substructure model. 

4. Wait until the message ‘waiting for connection’ appears 

5. Locate the folder in which the integration module input, subroutine and the run.bat files 

are located. 

6. Open a command window in this folder (Shift+right-click – Select ‘Open Command 

Window’) 

7. Type run.bat to run the integration model. 

8. The analysis will start. 
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6.9   ANALYSIS RESULTS 

Upon completion of the analysis, the results of the analysis can be observed by opening the 

ABAQUS .odb output files that are generated in the integration and substructure module folders. 

Post-processing of the results can be done using the ABAQUS visual interface. 

For the example structure, a push over analysis is carried out up to 165 mm of lateral displacement, 

once using a standalone ABAQUS model, which only uses frame elements, and once with the 

hybrid model. In the hybrid model, the beam and the column are modeled in one ABAQUS model, 

using frame elements, and the BRB specimen is modeled in another ABAQUS model, using solid 

elements as described in Section 6.4. Figure 6. 14 shows the response of the braced frame, in terms 

of lateral force-lateral deformation, obtained from each analysis case. 

 

Figure 6. 14: Node Response of the Example Braced Frame to the Push-Over Analysis 

As can be observed, the response obtained from the hybrid model shows a slightly smaller effective 

post-yield stiffness. This is expected as the frame elements used for modeling the BRB specimen 

in the standalone ABAQUS model assume uniform distribution of the stresses in the element, 

while the solid element in the hybrid model captures the stress concentration in the element. 
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CHAPTER 7. ANALYTICAL HYBRID SIMULATION 

OPENSEES – ABAQUS  

7.1   INTRODUCTION 

In this Chapter the step by step procedure for conducting analytical hybrid simulation by coupling 

an OpenSees [McKenna et al., 2000] model, as the integration module, with an ABAQUS [2013] 

model, representing the substructure module, is presented.  

7.2   COMMUNICATION OVERVIEW 

The communication system for multi-platform hybrid simulations in which the integration module 

is represented by an OpenSees model, and the substructural module is represented by an ABAQUS 

model, is completely analogous to the communication scheme presented in Chapter 3, for the 

OpenSees integration module, and to the communication scheme presented in Chapter 6, for the 

substructure module.   

 

Figure 7. 1: Illustration of Communication Architecture in Numerical Multi-Platform Hybrid Simulation with an 

OpenSees Integration Module and ABAQUS Substructure Modules, with Using NICA  

In order to use OpenSees as the main integration module, an OpenSees element termed as 

SubStructure element has been defined and implemented in OpenSees platform [Huang and Kwon; 

UT-SIM, 2017]. The SubStructure element is defined to exchange data with the substructure 

module. The properties of the substructure element, and the interface nodes as defined in the 

integration module, are read from the .txt files ‘Kinit.txt’ and ‘Structfile.txt’ files, respectively. 
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The ‘Kinit.txt’ and ‘Structfile.txt’ files can be specified/edited by the user, in the same folder where 

the OpenSees model representing the integration module is located. 

There are two alternative methods for integrating ABAQUS as the substructure module, in a mult i-

platform hybrid simulation.  

In one approach, the interface program NICA, discussed in Chapter 1, can be used. The procedure 

will be similar to that discussed in Chapter 3. A schematic illustration of the communication and 

data exchange architecture in such a case is presented in Figure 7. 1. 

In the other approach, a UEL for ABAUQS substructures has been developed to allow a direct 

communication between the integration and substructure modules. Hence, using NICA will not be 

necessary. A schematic illustration of the communication and data exchange architecture in such 

a case is presented in Figure 7. 2. 

 

Figure 7. 2: Illustration of Communication Architecture in Numerical Multi-Platform Hybrid Simulation with an 

OpenSees Integration Module and ABAQUS Substructure Modules, without Using NICA  

Communication between the SubStructure element in the integration module and NICA (Figure 7. 

1), or UEL for the substructure module (Figure 7. 2), is enabled by UTNP which is complied within 

a Dynamic Link Library, DataExchange.dll. 

In the current example, the second communication scheme is adopted. 

7.3   EXAMPLE STRUCTURE 

Example Structure I, described in Chapter 2 is used for the simulation. The general background 

and the decomposition of the system into analytical substructures is identical to that presented in 

Chapter 3. The only difference in this section is that the BRB specimen is modeled as a solid 

element in ABAQUS, as the substructure module, rather than the use of an OpenSees substructure. 

Figure 7. 3 shows the decomposition of the structure into the analytical substructures. 
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(a)            (b)                 (c) 

Figure 7. 3: Illustration of the Analytical Models – (a) Standalone OpenSees Model, (b) OpenSees Integration 

Module, and (c) ABAQUS Substructure Module Using Solid Elements  

7.4  ASSUMPTIONS/ANALYSIS 

A push over analysis is carried out on the example structure. The pushover analysis is first carried 

out on a standalone analytical model of the structure as whole, in OpenSees. The OpenSees 

standalone model is included in the example files and is the similar to the OpenSees standalone 

model used for Chapter 3. 

Next, the structure is decomposed into two analytical substructures as shown in Figure 7.3. 

The frame substructure is modeled in OpenSees, which acts as the integration module. The script 

of the OpenSees model, representing the integration module, is included in the example files.  

The BRB specimen is modeled in ABAQUS, which acts as the substructure module. Solid 

elements are used for modeling the BRB specimen in ABAQUS. C3D8R 8-node linear brick 

elements with reduced integration elements are used as the mesh elements. Since the model is 

created just for illustration purposes, a mesh-sensitivity analysis is not carried out. The element is 

modeled such that it would yield in both tension and compression, as expected from BRB elements.  

Figure 7. 4 shows a screenshot of the element modeled in ABAQUS. 

 

Figure 7. 4: BRB Specimen as Modeled in ABAQUS as the Substructure Module  

In both models, a simple bilinear material behavior is assumed for the buckling-restrained brace 

steel material. The yield strength is assumed as 300 MPa, as expected for 300W steel. The post-

yield modulus is assumed to be 1% of the elastic material modulus. The assumed stress-strain 
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response is shown in Figure 7. 5. A linear elastic behavior is assumed for the beam and the columns 

as they are only subjected to gravity loads. 

7.5   ACCESSING ABAQUS SUBROUTINE 

In order to perform analytical hybrid simulations, using ABAQUS substructures, first the 

procedure provided in Section 6.5 of Chapter 6 must be completed to allow access to ABAQUS 

subroutine. 

7.6   ADJUSTING THE DATA EXCHANGE LIBRARY FOR ABAQUS 

In order to perform analytical hybrid simulations, using ABAQUS substructures, the procedure 

provided in Section 6.6 of Chapter 6 must be completed to adjust the data exchange library for 

ABAQUS. 

 

Figure 7. 5: Stress-Strain Response of the Buckling-Restrained Brace Steel Material 

7.7  ABAQUS SUBSTRUCTURE MODULE 

In the current Chapter, an ABAQUS model is used as the substructure module. Therefore, the same 

procedure provided in Section 6.7.2 must be followed to generate the substructure module input 

files. The input file for the ABAQUS substructure ‘AbqSub.inp’ is provided in the example files, 

in ‘AbaSub’ subfolder. The ABAQUS substructural module used in the current Chapter is identica l 

to that described and provided in Chapter 6.  

7.8   OPENSEES INTEGRATION MODULE 

In the current example, the integration module is modeled in OpenSees platform. The OpenSees 

script ‘One.tcl’, which is used as the integration module is provided in the example files, in the 
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folder ‘OpenSees Integration’. The rest of the files, in the ‘OpenSees Integration’ folder, are 

similar to those described in Chapter 3.  

Similar to Chapter 3, in order to link the two substructures, the SubStructure element developed 

for OpenSees platform must be defined in the integration module to represent the substructure 

element. This can be done by the following command: 

 element SubStructure $eleTag –file Structfile.txt –Kinit Kinit.txt; 

where $eleTag is the unique element tag for the structural component treated as the substructure 

module. In the current example, the substructure module is the BRB element, which has the 

element tag of 1 in the standalone OpenSees model. The same tag is used in the OpenSees model 

that is used as the integration module.  

Prior to starting the analytical hybrid simulation steps, it is vital to ensure the following: 

1. Extract the content of the ZIP file ‘HSF.zip’ and place a copy of the ‘HSF’ folder on the 

computer drive on which the operating system is installed.  

2. Ensure that the OpenSees version that is used for the analysis is 2.4.3 (rev 5645).  

3. It is imperative that the two .dll files ‘SubStructure.dll’ and ‘DataExchange.dll’ are placed 

in the folder from where OpenSees is running, as described in Chapter 3. 

4. It is essential that .txt files ‘Structfile.txt’ and ‘Kinit.txt’ are present in the folder, from 

which the integration module is executed. The inputs for these .txt files are the same as 

those described in Chapter 3.  

7.9   HYBRID SIMULATION EXECUTION 

Locate the ‘run.bat’ file in the substructure ABAQUS model folder. Open the ‘run.bat’ file using 

a notepad editor. Change the text to have: 

abaqus job=AbqSub user=SubSub interactive 

where ‘AbqSub’ is the name of the substructure input file and ‘SubSub’ is the name of the 

subroutine file for the substructure. 

After the above step, using the following steps, the analytical hybrid simula tion can be executed: 

1. Locate the folder in which the substructure input, subroutine, and the run.bat files are 

located. 

2. Open a command window in this folder (Shift+right-click – Select ‘Open Command 

Window’) 

3. Type run.bat to run the substructure model. 

4. Wait until the message ‘waiting for connection’ appears 
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5. Locate the folder in which the integration model OpenSees script is located. 

6. Execute the OpenSees integration module. 

7. The analysis will start. 

7.10 ANALYSIS RESULTS 

Upon completion of the analysis, the results of the analysis on the substructure can be observed by 

opening the ABAQUS .odb output file that is generated in the substructural module folder. In 

addition, the results can be obtained from the ‘Comm_log.log’ file, or from OpenSees 

displacement recorders.  

For the example structure, a push over analysis is carried out up to 165 mm of lateral displacement, 

once using a standalone OpenSees model, which only uses frame elements, and once with the 

hybrid model. In the hybrid model, the beam and the column are modeled in OpenSees platform, 

using frame elements, and the BRB specimen is modeled in ABAQUS, using solid elements as 

described in Section 7.4. Figure 7. 6 shows the response of the braced frame, in terms of lateral 

force-lateral deformation, obtained from each analysis case. 

As can be observed, the response obtained from the hybrid model shows a slightly smaller effective 

post-yield stiffness. This is expected as the frame elements used for modeling the BRB specimen 

in the standalone OpenSees model assume uniform distribution of stresses in the element, while 

the solid element in the hybrid model captures the stress concentration in the element. 

 

Figure 7. 6: Response of the Example Braced Frame to the Push-Over Analysis 
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CHAPTER 8. ANALYTICAL HYBRID SIMULATION 

ABAQUS – OPENSEES 

8.1   INTRODUCTION 

In this Chapter the step by step procedure for conducting analytical hybrid simulation by coupling 

an ABAQUS [2013] model, as the integration module, with an OpenSees [McKenna et al., 2000] 

model, representing the substructure module, is presented. 

8.2   COMMUNICATION OVERVIEW 

Shown in Figure 8. 1, is a schematic illustration on how the communication is established in 

numerical multi-platform hybrid simulations in which an ABAQUS model acts as the integrat ion 

module, and one or more OpenSees models act as numerical substructures. 

 

Figure 8. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulation with an ABAQUS Integration Module and OpenSees Substructure Modules  

Similar to the SubStructure element defined for OpenSees, in order to use ABAQUS as the 

integration module, a User Element (UEL) has been developed for ABAQUS. 

Further, the interface program NICA, which was defined in Chapter 1, has been developed to 

externally control the OpenSees substructure analytical model, during the analysis [Huang and 

Kwon; UT-SIM, 2017]. The interface nodes, as defined in the numerical substructure model, are 

specified in the ‘NICA.cfg’ file by the user. The ‘NICA.cfg’ file can be edited with any text editor 

and must be stored in the same folder where the numerical substructure model is located. 

Communication between the UEL element, defined in ABAQUS, and the interface program NICA, 

is enabled by UTNP, which is complied within a Dynamic Link Library, DataExchange.dll. 
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8.3   EXAMPLE STRUCTURE 

Example Structure I, described in Chapter 2 is used for the simulation. The general background 

and the decomposition of the system into analytical substructures is identical to that presented in 

Chapter 6. The only difference in this Chapter is that the BRB specimen is modeled in OpenSees, 

as the substructure module, rather than the use of an ABAQUS substructure with solid elements. 

Figure 8. 2 shows the decomposition of the structure into the analytical substructures. 

 

(a)         (b)             (c) 

Figure 8. 2: Illustration of the Analytical Models – (a) Standalone ABAQUS Model, (b) ABAQUS Integration 

Module Using Frame Elements, and (c) OpenSees Substructure Module 

8.4  ASSUMPTIONS/ANALYSIS 

A push over analysis is carried out on the example structure. The pushover analysis is first carried 

out on a standalone analytical model of the structure as a whole, in ABAQUS. Next, the structure 

is decomposed into two analytical substructures, as shown in Figure 8. 2. 

The ABAQUS integration module in the current example is identical to that described in Chapter 

6. The OpenSees substructural module is identical to that given in Chapter 3. The rest of the 

assumptions and analysis backgrounds are identical to that described in Chapter 6.  

8.5   ACCESSING ABAQUS SUBROUTINE 

In order to perform analytical hybrid simulations, using ABAQUS substructures, first the 

procedure provided in Section 6.5 of Chapter 6 must be completed in order to gain access to 

ABAQUS subroutine. 

8.6   ADJUSTING THE DATA EXCHANGE LIBRARY FOR ABAQUS 

In order to perform analytical hybrid simulations, using ABAQUS substructures, the procedure 

provided in Section 6.6 of Chapter 6 must be completed in order to adjust the data exchange library 

for ABAQUS. 

8.7   ABAQUS INTEGRATION MODULE 

In the current Chapter, an ABAQUS model is used as the integration module. Therefore, the same 

procedure provided in Section 6.7.1 must be followed to generate the integration model input files. 
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The input file for the ABAQUS substructure ‘AbaInt’ is provided in the example files, in ‘AbaInt’ 

subfolder. Note that the ABAQUS integration module used in the current example is identical to 

that used in Chapter 6. 

8.8   OPENSEES SUBSTRUCTURE MODULE 

The OpenSees substructure used in the current example, and the necessary files, are provided in 

the example files. Note that the OpenSees substructure and the inputs are identical to that used in 

Chapter 3. 

Prior to commencing the analytical hybrid simulation steps, it is vital to ensure the following: 

1. Extract the content of the ZIP file ‘HSF.zip’ and place a copy of the ‘HSF’ folder on the 

computer drive on which the operating system is installed.  

2. Ensure that the OpenSees version that is used for the analysis is 2.4.3 (rev 5645).  

3. It is imperative that the two DLL files ‘SubStructure.dll’ and ‘DataExchange.dll’ are placed 

in the folder from where NICA is running. 

4. Have ‘NICA.exe’ and ‘NICA.cfg’ files in the folder where the substructural OpenSees 

model is running from. The inputs specified in the ‘NICA.cfg’ file will be the same as those 

described in Chapter 3. 

5. It is essential that .txt files ‘Structfile.txt’ and ‘Kinit.txt’ are present in the folder, from 

which the integration module is executed. The inputs for these .txt files are the same as 

those described in Chapter 3.  

8.9   HYBRID SIMULATION EXECUTION 

Locate the ‘run.bat’ file in the ABAQUS integration module folder. Open the ‘run.bat’ file using 

a notepad editor. Change the text to have: 

abaqus job=AbaInt user=IntSub interactive 

where ‘AbaInt’ is the name of the integration input file and ‘IntSub’ is the name of the subroutine 

file for the integration module. 

After the above step, using the following steps, the analytical hybrid simulation can be executed: 

1. Locate the folder in which the OpenSees substructure, and ‘NICA.exe’ is stored. In the 

example files, they are located in the ‘NICA’ folder. 

2. Run NICA.exe. 

3. Wait until the message ‘waiting for connection’ appears 
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4. Locate the folder in which the integration module input, subroutine, and the run.bat files 

are located. 

5. Open a command window in this folder (Shift+right-click – Select ‘Open Command 

Window’) 

6. Type run.bat to run the integration model. 

7. The analysis will start. 

8.10 ANALYSIS RESULTS 

Upon completion of the analysis, the results of the analysis on the substructure can be obtained 

from the ‘NICA_Data.log’ file that is generated in the ‘NICA’ folder. In addition, the results can 

also be obtained and post-processed by opening the ABAQUS output .odb file, generated in the 

Integration module folder (‘AbaInt’ in the example) in ABAQUS visual interface.  

For the example structure, a push over analysis is carried out up to 165 mm of lateral displacement, 

once using a standalone ABAQUS model, and once with the hybrid model. In the hybrid model, 

the beam and the column are modeled in ABAQUS, and the BRB specimen is modeled in 

OpenSees platform. In all models, frame elements are used for the analysis. Figure 8. 3 shows the 

response of the braced frame, in terms of lateral force-lateral deformation, obtained from each 

analysis case. 

As can be observed, the response obtained from both analyses are close to identical. This is because 

in both models, the BRB specimen is presented with frame elements that use similar formulations.  

 

Figure 8. 3: Response of the Example Braced Frame to the Push-Over Analysis  
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CHAPTER 9. EXPERIMENTAL HYBRID SIMULATION 

OPENSEES –SPECIMEN  

9.1   INTRODUCTION 

Hybrid simulation is an attractive testing method, which offers numerous advantages over other 

testing methods such as quasi-static and shake table test methods. Hybrid simulations, similar to 

shake table tests can effectively assess the global seismic performance of a structural system as a 

whole. The advantage of hybrid testing is that it significantly reduces the experiment costs, 

required space, and technical resources by strategically and selectively limiting the substructura l 

elements that are physically tested, while maintaining accuracy and efficiency. This will remove 

the need for scaling the physical specimens, which can raise questions on the validity of the results, 

and is almost inevitable in shake table tests due to excessive costs and lab resources required to 

execute a full-scale test. Another significant advantage of hybrid simulation to note is that it is not 

confined to the limits in one laboratory and can be executed in several laboratories through 

geographically distributed hybrid simulation [Spencer et al., 2006; Mosqueda et al., 2008; Kim et 

al., 2012]. Each laboratory has testing facilities with unique aspects that could benefit the 

experiment. For instance, if the hybrid simulation is that of a steel structure on soft soil, the soil 

medium and the foundation system can be physically modeled in one laboratory equipped with a 

shake table test while the braces of the first story are physically modeled in another laboratory 

with hydraulic actuators and advanced control systems. The numerical model can run as the 

integration module in either of the two laboratories. 

With accelerating advancements in the field of structural/earthquake engineering and the 

emergence of smart seismic resilient systems, smart structures, and smart materials, the advantages 

of experimental hybrid simulation are becoming increasingly appealing. Hence, the adoption of 

hybrid simulation as a testing method is becoming necessary for testing facilities to achieve 

efficient experimental programs in terms of costs, time, technical expertise and laboratory space 

and resources. 

Development, implementation, and application of experimental – analytical hybrid simula t ion 

methods have been the subject of numerous studies for about four decades. Early studies were 

primarily focused on the development of hybrid simulation methods [Hakuno et al., 1969; 

Takanashi et al., 1975; Mahin and Shing, 1985; Takanashi and Nakashima, 1987]. With 

progressive advancements, the focus of subsequent studies shifted toward the direct application of 
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hybrid simulation to seismic performance assessment of structural systems. Example studies 

include Christenson et al. [2008], Yang et al. [2009], Stavridis et al. [2010], Karavasilis et al. 

[2011], Kammula et al. [2013], Mojiri et al. [2015a; 2015b] and Wu et al. [2017]. However, 

despite vast research and advancements in experimental hybrid simulation methods, the 

implementation of experimental hybrid simulation in a laboratory for the first time still poses 

significant technical challenges and difficulties. This stems from the inherent complex nature of 

hybrid simulation methods. Other than requiring sophisticated testing facilities, hybrid simula t ion 

methods are extremely demanding in terms of the required technical resources. 

In this Chapter, a step by step procedure for conducting an experimental – analytical pseudo – 

dynamic hybrid simulation is presented through a simple example test setup, to assist researchers 

in first-time implementation of hybrid simulation in testing facilities. While the test setup is that 

of a very simple structure, the concept is applicable to any hybrid simulation in a complete ly 

analogous manner.  

First, an overview of the communication architecture is provided in pseudo-dynamic experimenta l 

hybrid simulations, with OpenSees acting as the integration module. Further, the example structure 

is introduced and its properties are outlined. Afterwards, the sub-structuring strategy is discussed 

for the hybrid simulations. Afterwards, an experimental hybrid simulation is carried out where a 

portion of the system is calibrated and physically tested as the physical sub-structure. The 

experimental test setup hardware is discussed. The results of the experimental – numerical hybrid 

simulation is then compared with the results obtained from the complete OpenSees [McKenna et 

al., 2000] model. 

9.2   COMMUNICATION OVERVIEW 

Shown in Figure 9. 1, is a schematic illustration on how the communication is established in 

numerical multi-platform hybrid simulations in which an OpenSees model acts as the integrat ion 

module, and one or more physical specimens act as numerical substructures. 

In order to use OpenSees as the main integration module, the OpenSees element termed as 

SubStructure element discussed in previous Chapters [Huang and Kwon; UT-SIM, 2017] must be 

used. The SubStructure element is defined to exchange data with the substructure module. The 

properties of the SubStructure element, and the interface nodes as defined in the integrat ion 

module, are read from the .txt files ‘Kinit.txt’ and ‘Structfile.txt’ files, respectively. The ‘Kinit.txt’ 

and ‘Structfile.txt’ files can be specified/edited by the user, in the same folder where the OpenSees 

model representing the integration module is located. In experimental hybrid simulations, if the 

initial stiffness of the physical substructure happens to be larger than the specified initial stiffness 

in the ‘Kinit.txt’ file, the analysis results will become unstable. It is therefore recommended that 

the stiffness values, specified in the Kinit.txt file, are slightly larger than the predicted values (10%-

20% larger). This will remove the possibility of encountering numerical instabilities without 

influencing the structure’s response.  
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Figure 9. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulation with an OpenSees Integration Module and Physical Substructures  

For the experimental substructure module, a single DOF version of the controller interface 

program NICON, which is discussed in Chapter 1, has been developed. NICON is based in 

LabView, a graphical programming syntax design software, which is compatible with National 

Instrument (NI) hardware [2017]. The featured version of NICON is programmed to receive  

commands from the integration module through UTNP (DataExchange.dll), generate analog 

voltage commands to actuator controllers, and return measured responses to the integrat ion 

module. The original version of NICON featured a general and flexible design such that it provided 

a basis for future advancements [Kammula et al., 2014; Zhan and Kwon, 2015]. Since then, 

NICON has been further advanced for other applications. Giotis et al. used a refined version of 

NICON for coupled DOFs. Mojiri et al. [2015a; 2015b] extended the original version of NICON 

to NICON-10 for hybrid simulations on up to ten uncoupled uniaxial elements with the HT10 

Hybrid Simulator at the University of Toronto. Advanced NICON versions are able to perform 

nonlinear; three-dimensional coordinate transformations using generic transformation algorithms. 

They further include error compensation schemes to account for deformation control inaccurac ies.  

9.3   EXAMPLE STRUCTURE 

Example Structure III, discussed in Chapter 2 is used in this Chapter.  

9.4   STANDALONE OPENSEES MODEL 

In the example analytical hybrid simulation presented herein, first the structural system is modeled 

in OpenSees platform as a whole. This is carried out to provide a basis for comparing the results 

of the numerical analysis to the results obtained from the experimental hybrid simulation. The 

script for the standalone OpenSees model is provided in the example files. 

A damping ratio of 2% is assumed for the first and the second mode of the structure. The periods 

of the structure are calculated as 0.643 seconds and 0.246 seconds for the first and the second 

modes, respectively. The structure is subjected to ground motion record, discussed in Section 2.4.3, 
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with a scale factor of 3.0. Direct time-step integration of the equations of motion is carried out 

with a time-step of 0.01 seconds. 

9.5   SUBSTRUCTURES FOR THE EXAMPLE EXPERIMENTAL HYBRID SIMULATION 

The structure is decomposed into a numerical integration module, and a physical substructure 

module, similar to that discussed in Section 2.4.2. Figure 9. 2 shows the sub-structuring scheme. 

9.5.1 OpenSees Integration Module 

Both masses (M1 and M2) and the spring between the masses (K2 in Figure 9. 2) are modeled as 

the integration module in OpenSees platform. The script for the OpenSees integrat ion module, 

named ‘HM.tcl’ can be found in the example files, in the ‘OpenSees_Integration’ folder. The 

integration module is also illustrated in Figure 9. 2 (b). 

Note that NICON is programmed to receive displacements in mm and forces in N. Therefore, the 

OpenSees model base unit system must be in mm and N. 

The inputs for the .txt files ‘Kinit.txt’ and ‘Structufile.txt’, in the ‘OpenSees_Integration’ folder 

must be specified in an analogous manner to that in Chapter 3.  

The structure only moves in the horizontal direction and the problem is a one-dimensional one. 

Therefore, the initial stiffness matrix of the structure will only contain one component and will be: 

 
mm

N
KG 5  

As recommended previously, the initial stiffness of the substructure in experimental hybrid 

simulations must be slightly higher than the predicted value to avoid numerical instabilit ies. 

Therefore, the initial stiffness is specified as 7 N/mm. Hence, the initial stiffness matrix file 

‘Kinit.txt’ takes the following form, shown in Figure 9. 3. 

In addition, in the OpenSees integration module, an Alpha OS integrator [Combescure and Pegon, 

1997] is used. The value of alpha can be adjusted to increase the numerical damping. The 

numerical damping can further assist to avoid numerical instabilities. In the current example an 

alpha of 1.0, as defined in OpenSees, is used. This is equal to an alpha value of 0.0, as defined by 

the Alpha-OS method [Combescure and Pegon, 1997]. 

 

= 

 

+ 

 

(a)  (b)  (c) 

Figure 9. 2: Illustration of the Substructures – (a) Complete Model (OpenSees), (b) Integration Module represented 

by an OpenSees Model (c) Physical Substructure 
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Figure 9. 3: ‘Kinit’ File Input 

The inputs for the “Structfile.txt” are shown in Figure 9. 4. The inputs are self-explanatory, and 

also described in Chapter 3. 

 

Figure 9. 4: ‘Structfile.txt’ File Inputs  
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9.5.2 Physical Substructure 

The first spring K1, is treated as the substructure module in the example structure. The substructure 

module is represented by a small-scale physical spring. Through the use of an actuator, the spring 

substructure is subjected to displacement commands that NICON receives from the OpenSees 

integration module. Further information on the test setup is presented in the following section. 

9.6   TEST SETUP 

The test setup is shown in Figure 9. 5 and Figure 9. 6. The test setup consists of the interface 

program NICON [Kammula et al., 2014; Zhan and Kwon, 2015; Mojiri et al., 2015a; Mojiri et al., 

2015b], a National Instrument (NI) Data Acquisition (DAQ) system [2009; 2017], an Actuator 

controller, an Actuator, and the physical specimen which represents the substructure module.  

 

Figure 9. 5: Experimental Test Setup  

The version of the interface program NICON that is used in the current example is developed for 

one-dimensional problems and is included in the example files. The NICON program is 

Actuator Controller 

Actuator  

Load Cell  

Physical 

Specimen  
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responsible for establishing communication between the OpenSees integration module and the 

actuator controllers, to ensure that the displacements of the interface nodes, in the numerical model 

and the physical specimen are synchronized. In essence, in each step, NICON will communicate 

the command displacements to the actuator controller. The actuator controller will then apply the 

displacement command to the actuator. The load cell will measure the force feedback of the 

specimen, and the actuator linear variable differential transformer (LVDT) will measure the 

specimen displacement feedback. The force and displacement feedbacks of the specimen are then 

communicated from the actuator controller to NICON. NICON will send the displacement and 

force feedbacks to the OpenSees integration module, and the analysis will proceed to the next step. 

Instructions on using the provided NICON program, and performing the experimental hybrid 

simulation, are provided in Section 9.7. In the following, other elements of the test setup are 

discussed. 

9.6.1 Actuator Controller 

The actuator controller receives the displacement commands from NICON, applies them to the 

actuators, and feeds back the measured force and displacements of the physical specimen to 

NICON. The actuator controller that is used in the test setup is an in-house made DC motor 

controller, which runs proportional control. The micro controller, ATmega328, is used as the main 

control board. The micro controller can be easily programmed with Arduino programming 

interface (https://www.arduino.cc/en/Main/arduinoBoardNano). The controller can use two input 

sources: internal command applied with a potentiometer and external analog voltage signal. The 

controller outputs measured force and displacement as analog voltage signal. Since, a low-cost 

micro controller and DC actuator are used, the accuracy of control is not high. However, the 

controller and the experimental system can be used for demonstration purposes, as the analog 

voltage interface for hydraulic controller is very similar.  

9.6.2 Actuator  

The actuator that is used in the experimental setup is a DC motor-controller linear actuator. A gear 

assembly at the rear of the actuator converts rotation motion to linear motion. The gear assembly 

also includes a potentiometer with which the position of the linear motion can be referenced. The 

actuator is not a high-precision one and could exhibit backlash when the load changes from 

compression to tension, or vice versa. As such, the tension-only physical specimen is used to 

minimize the effect of the backlash.  

9.6.3 Load Cell 

The load cell measures the forces that are developed in the physical specimen, as the specimen 

undergoes the applied command displacements. The load cell that is used in the example test setup 

has force capacity of ±100 lb. 

https://www.arduino.cc/en/Main/arduinoBoardNano
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Figure 9. 6: Experimental Test Setup 

9.6.4 Physical Specimen 

The physical specimen is represented by a physical spring, as shown in Figure 9. 5 and Figure 9. 

6.  NICON is used to measure the stiffness of the physical substructure. Afterwards, the numerica l 

standalone OpenSees model is adjusted and the stiffness of the substructure element, in the model, 

is set equal to the measured value. This is carried out to provide a basis for comparison of the 

results from the numerical model, to the results obtained from the experimental hybrid simulat ion.  

9.6.5 National Instrument (NI) Hardware 

The National Instrument hardware is connected to the actuator controller in the test setup. The NI 

DAQ hardware that is used in the current example is NI USB-6218 [DAQ M Series, 2009]. It is 

important to verify that the input/output channels that are used for displacement and force 

measurements are consistent with the designated physical channels, in NICON configuration file.  

Figure 9. 7 shows the NI DAQ system used in the current example. Figure 9. 8 shows an illustra t ion 

of the DAQ system, with all the ports, taken from the DAQ M Series Manual [2009]. The ports 

that are used in the current example are highlighted.  

The ports that are used in the experimental setup are marked in Figure 9. 8. Each port and its use 

is discussed below: 

1. Analog Input 0 (AI0): This is the displacement measurement channel (Referenced Single -

Ended). 

2. Analog Input 1 (AI1): This is the force measurement channel (Referenced Single-Ended). 

3. Analog Input Ground (AI GND): This is used for the single-ended connection. 

Actuator Controller Actuator  Load Cell  Physical 

Specimen  
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AI GND is an AI common signal that routes directly to the ground connection point on the 

device. 

4. Analog Output 1 (AO1): This is actuator displacement/stroke command channel 

(Differential). 

Note that since the input measurements are performed with a single-ended connection 

configuration, the floating source architecture is required to be used for the DAQ system. 

 

 

 

Figure 9. 7: NI DAQ System Used in the Test Setup 
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Figure 9. 8: NI DAQ System Used in the Test Setup (From DAQ M Series Manual [2009]) 
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9.7   INSTRUCTIONS FOR USING THE INTERFACE PROGRAM NICON 

Instructions on using the one-dimensional version of the NICON program that is provided with 

the example files, is outlined through Sections 9.7.1, 9.7.2, and 9.7.3. In Section 9.7.1, the NICON 

visual interface is introduced and the buttons and indicators of NICON front panel are discussed. 

Section 9.7.2 outlines the procedure for running a single degree of freedom (SDOF) hybrid 

simulation. Section 9.7.3 describes the recorded data in the log files that are generated by NICON 

during the simulation. 

9.7.1 NICON Visual Interface and Front Panels 

The control buttons and indicators are located in different panels and each panel has one or more 

tabs. The functions and meanings of each button and indicator are explained in the following 

sections. Figure 9. 9 shows a screenshot of NICON front panel, taken during the test. 

 

Figure 9. 9: Screenshot of NICON Front Panel 

A. Command Source Panel 

This panel shows information about the command source. The command source could be a 

numerical model, manually input commands, or a file containing displacement history. In the 
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current hybrid simulation, the OpenSees numerical model communicates with NICON as the 

command source. 

A.I. Network Tab 

The network tab is shown in Figure 9. 10. During the hybrid simulation, this tab shows information 

about the OpenSees model and the communication status between the numerical model and 

NICON. 

 

Figure 9. 10: Screenshot of the Network Tab in NICON 

Indicators: 

Port Number: This number is defined in NICON configuration file. It should match the port 

number defined in the numerical model. In the OpenSees numerical model, the port number is 

specified in the ‘Structfile.txt’ file, discussed earlier. 

CMD recvd: This indicator shows the command status, and not the command itself. This indicator 

will show either 3, or 10. When it is showing 3, it means NICON is receiving the command from 

OpenSees and, when showing 10, it means that NICON is commanding the controller or reporting 

back to OpenSees. 

Current Step Number: This indicator shows the number of the current time-step during the test. It 

can be useful for monitoring the progress of the test. 

recvied target Displacement: This indicator shows the target displacement that OpenSees sends to 

NICON. This displacement is the target displacement of the specimen by the end of an increment.  
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SocketNum: This number is used to set up a connection between NICON and the numerica l 

OpenSees model. It is pre-defined in the substructural module that is used in OpenSees and does 

not need to be changed by the user. 

Status lights: 

Create data exchange format: The received data and the data that is sent out from NICON must 

have the same DOFs. Since NICON receives displacements and sends back both displacement and 

force, the size of the information components that are sent out should always be twice as the 

number of received information components. In the SDOF case, NICON receives one 

displacement and sends one displacement and one force feedback to OpenSees at every 

communication increment. 

Connected: The ‘Connected’ light will go on when the connection is established.  

Waiting CMD: This light is turned on when OpenSees is processing data. This happens after 

NICON sends force and displacement feedbacks to OpenSees and before NICON receives the new 

displacement command from OpenSees. 

Testing: This light will turn on during the time it takes for NICON to send the displacement and 

force measurements back to OpenSees, after receiving a displacement command. 

Reporting: This light turns on when NICON sends all feedbacks into the communication library. 

It turns off very quickly. 

Completed: This light turns on when the simulation is completed.  

NC Status: This light turns on when a new command is received and NICON is ready for testing. 

Ready to Read the Values: This light turns on when NICON is ready to receive the new 

displacement command, in the simulation.  

Buttons: 

Start Server: By clicking on this button, NICON will await setting up the connection with the 

numerical model. In the current version, NICON will be frozen after the button is clicked and will 

be back to normal when the connection is setup successfully. 

Start Communication: This button will start the procedure of sending/receiving data. Note that 

merely starting the server, and setting up the connection will not enable sending/receiving of data, 

until this button is pressed. This button must be pressed when everything is ready in the test setup. 

A.II. User Input Tab 

This tab is used for cases when it is desired to apply manual commands to the actuator controller. 

In hybrid simulations using NICON, the offset functions are used before the test. A screenshot of 

the user input tab is shown in Figure 9. 11. 
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Indicators: 

Actuator Stroke: The value that is input into the Actuator Stroke slot is used to apply displacement 

commands to the actuator manually. 

Displacement Offset: The displacement offset is displayed in this box.  

Force Offset: The force offset is displayed in this box.  

 

Figure 9. 11: User Input Tab in NICON 

Buttons: 

Allow Offset switch: This button is used to reset the force and displacement origin. 

Reset Displacement Origin: This button will change the displayed number. Clicking on this button 

will set the current measured displacement as zero displacement. Note that clicking on this button 

will not change the displacement command, and only changes the displayed number. 

Reset Force Origin: This button will change the displayed number. Clicking on this button will set 

the current measured force as zero force. Note that clicking on this button will not change any 

command, and only changes the displayed number showing the measured force. 

A.III. Time-History Tab 

The time-history tab is used to apply a pre-defined command path to the specimen. It could 

represent a ground motion, a cyclic displacement, or a monotonic displacement command. The 

Time-History tab of the example NICON version is shown in Figure 9. 12. 
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Indicators: 

Current Commands: Shows the current displacement command, at the current step, in the defined 

time-history. 

Tot_no_cmnds: Shows the total number of displacement commands, defined in the time-history. 

Step Executing: The step number that is being executed at the present analysis step. 

Status Lights 

New Step: This light turns on when the new command is received and applied. 

Read: This light turns on when the new command is being read from the specified time-history. 

 

Figure 9. 12: Screenshot of the Time-History Tab 

Button 

Start/Stop: This button is used to start, or stop the analysis. 

Path 

The path in the Time-History tab specifies the location of the .txt file, which contains the time-

history command. The path can be specified in the NICON configuration file, or using the Open 

folder button on the time-history tab. 

Figure 

The defined time-history is also shown in the Figure, in the time-history tab. 
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B. Control Panel 

Information specified in this panel are simulation parameters. Most of the values are pre-set in 

NICON configuration file and are merely displayed in this panel. 

B.I.   Control Tab 

The control tab of the present NICON version is shown in Figure 9. 13. This tab displays 

information on displacement commands and some of the NICON control parameters. 

 

Figure 9. 13: Screenshot of the Control Tab 

Indicators: 

Previous Target Disp: This number represents the displacement command sent to the controller at 

the end of the ramp and hold period.   

Current Command Disp: The current displacement command sent from NICON to actuator 

controller is displayed here.  

Current Target Disp: This number displays the target specimen displacement. The displayed value 

is always the same as the received displacement command from the numerical model. 

Current Measured Disp: This is the actual measured specimen displacement.  

Ramp: This number shows the ramp time for each displacement increment. 

Hold: This number shows the hold time after each ramp.  

Analog I/O update rate (ms): This number specifies the sampling rate for both the actuator 

controller measurements and the commands sent from NICON to the actuator controller. 
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Analog I/O logging rate (ms): This number specifies the rate with which the communica t ion 

between NICON and the controller will be recorded in the log file. 

Status Lights 

Displacement Limit Status: This light indicates whether the displacement limit is met before 

sending the command to the actuator controller. The upper and lower bounds of the displacement 

limit can be adjusted in NICON configuration file, or in the limits tab. 

Force Limit Status: This light indicates whether the force limit is met. The upper and lower bounds 

of the displacement limit can be adjusted in NICON configuration file, or in the limits tab. 

Buttons: 

Rampmode: This button can be used to turn ramp mode on or off. The ramp mode is on by default.  

Manual-Auto switch: This button is used to switch between the manual mode and the auto mode  

during the test. When on the auto mode, NICON is controlled by the numerical model. When on 

the manual mode, each analysis step must be executed manually by clicking on the ‘Execute Target 

CMD’ button. During the hybrid simulation, NICON mode can be switched from the auto mode 

to the manual mode, or from the manual mode from the auto mode.  

Execute Target CMD: This button is used to send displacement commands to the actuator 

controller manually, when the test is running under the manual mode. 

Cancel: This button can be used to terminate the execution of current displacement command, 

under the manual mode. 

Control: When the control button is switched on, NICON will take control of the controller. If the 

control button is not on, NICON will not send any commands to the actuator. By activating the 

control button before starting the analysis, NICON will send displacement commands to the 

actuator controller that are equal to the measured displacements, received from the numerica l 

model. 

B.II. Limits Tab 

The Limits tab for the provided NICON version is shown in Figure 9. 14. Force and displacement 

limits are shown and can be specified in this tab. The user can adjust the limits during the test as 

well. The limits specified here relate to the total actuator displacement stroke and force. In other 

words, the values before offset. 

Also specified in this tab, is the displacement increment limit. This is to ensure that a large 

displacement is not applied suddenly to the specimen during the test. A sudden large displacement 

may be an indication of an error in the system. Therefore, if this limit is exceeded, the user can 

check the test setup. To facilitate this, NICON is programmed to automatically switch to the 

Manual mode, when this limit is exceeded. 



91 

 

Figure 9. 14: Screenshot of the Limits Tab 

B.III. Scale Factors tab 

Figure 9. 15 shows a screenshot of the Scale Factors tab. The factors in this tab are set according 

to the controller’s specification. Scale factors and the I/O channel cannot be changed during the 

test. It is recommended that before every test, it is checked if the channels are connected correctly 

and proper scale factors are used. For the present example, the output command is communicated 

using differential signaling, while the input force/displacement measurements are communicated 

using single-ended signaling. 

  

Figure 9. 15: Screenshot of the Scale Factors Tab 
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C. Additional Indicators/Parameters 

The remainder of the indicators are presented in this section. Figure 9. 16 shows the indicators. 

These indicators are discussed below. 

 

Figure 9. 16: Additional Indicators/Parameters in NICON Front Panel 

C.I.  Ramp Indicators/Parameters: 

t_i shows the ramp start time. t_j shows the ramp end time. t_current shows the current time. 

cur_status is the ramp status stage (0 means idle stage, 1 identifies the ramp stage, and 2 identifies 

the hold stage). The velocity permitted indicator is used to specify the maximum velocity of the 

actuator stroke during the simulation. The ramp time is updated accordingly such that this velocity 

is not exceeded.  

C.II.  Loop Counting Parameters: 

These indicators count the number of loops that have been performed from the start of the analysis. 

The first row corresponds to the Analog Input/measurements, and the second row corresponds to 

the Analog Output/Commands.  

C.III.  Filter Parameters: 

A low-pass Butterworth filter is used to filter the input measurements. The additional two 

indicators are used to specify the filter order, and the low cut-off frequency.  

D. Monitoring Panel 

All received and output voltages as well as corresponding forces and displacements are displayed 

in this panel. The Monitoring Panel consists of three tabs, as described below. 
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D.I.  Time History Tab 

The Time-History tab is shown in Figure 9. 17. Displacement (both command and measured) and 

measured force history are shown in this tab.  

Actual/Tared switch changes the display of displacement/force, from absolute measurement to the 

measured value from offset, and does not influence the commands.  

 

Figure 9. 17: Screenshot of the Time-History Tab 

D.II.  Force-Displacement Tab 

The Force-Displacement tab is shown in Figure 9. 18. The graph displays the specimen force vs. 

specimen displacement during the test. The graph records tared value of force and displacement. 

Therefore, if the Reset F-D Graph button is not clicked on, jump in both force and displacement 

may be observed. It must be noted that this is only a display panel and the results or the commands 

are not influenced.  

 

Figure 9. 18: Screenshot of the Force-Displacement Tab 
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D.III.  Raw Voltages Tab 

Figure 9. 19 shows a screenshot of this tab. The input and output voltages are displayed here. In 

the current example, if the actuator follows the command well, there is no significant difference 

between input and output voltage. The NI hardware [2017] can output maximum voltage of 10 V, 

so that sets the maximum actual displacement. 

 

Figure 9. 19: Screenshot of the Raw-Voltages Tab 

9.7.2 Procedure for Performing a SDOF Experimental Hybrid Simulation 

In this section, a step-by-step procedure is provided for executing an experimental hybrid 

simulation using the NICON program developed for a SDOF system.  

1. Connect the DAQ device to the actuator controller. Ensure that the input/output connected  

channels for displacement and force are consistent with the channel number defined in the 

NICON configuration file. To assist with this, Section 9.6.5 and Figure 9. 8 can be 

consulted. 

2. Power the NI DAQ device. The NI hardware is powered by connecting it to the computer 

through a USB cord. 

3. Run NICON. This can be done by double clicking on the main .vi NICON file. NICON 

front panels will be loaded in LabView. Afterwards, run NICON by clicking the ‘ ’ 

button on the lift up corner. At this stage, NICON only reads force and displacement 

measurements from the actuator controller. Ensure that the readings in NICON are 

reasonable. 

4. Adjust the actuator stroke to be in a convenient position. This can be done by adjusting the 

actuator position in the User Input tab, in the Command Source Panel. This is mainly used 

for placing the specimen in the initial position for the test. 
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5. Click on the control button in the Control Panel in NICON. After the Control light is on, 

NICON starts to send out displacement commands to actuator controller equal to the 

received displacement measurements from the actuator controller. This is carried out to 

ensure that the specimen will not experience any sudden displacement command, when the 

Control is turned on. 

6. Reset the force and displacement origins, in the Command Source Panel, in the User input 

tab. This can be carried out by enabling the ‘Allow Offset’ switch. Afterwards, the ‘Reset 

Force Origin’ and the ‘Reset Displacement Origin’ buttons are activated and can be used. 

Reset the force origin and the displacement origin. The amount of offset is the current 

reading of force and displacement. This is carried out to ensure that the test data start from 

zero displacement and zero force states.  

7. Click on the Start Server button in the Command Source panel. NICON will wait for 

connection with the numerical integration module. 

8. Run the OpenSees model. 

9. Click on the Start Communication button in the Command Source panel. OpenSees 

numerical model will start to send displacement commands to NICON. The test can start 

at this stage. 

10. Use the Execute Target CMD button, in the Control tab, in the Control Panel, to run the 

simulation manually for a few steps. This is done to ensure communication is established 

and the test is running properly. 

11. After ensuring that the test is running properly, switch the simulation mode to Auto. The 

simulation will continue. The simulation will be stopped and automatically switched to the 

manual mode, if a limit is exceeded during the simulation. In such a case, an error message 

will appear with information about the exceeded limit, error, and instructions on how to 

continue with the test.  

12. When the test is finished, NICON will turn into the Manual mode. Switch the control 

source for the actuator controller, from external back to internal. Then, turn off NICON by 

clicking on the “ ” button in LabView, or just simply close LabView. 

13. After the simulation, a set of .log files will be generated in the folders containing NICON, 

and the OpenSees integration module. Ensure that the generated .log files are retrieved 

before re-running the test. This is carried out to avoid overwriting and mixing of files 

during the next simulations. The log files are discussed in the following section. 

9.7.3 Log Files Generated by OpenSees and NICON 

The Comm_log.log file is created in the folder containing the OpenSees integration module, and 

contains the measured forces and displacements throughout the hybrid simulation. 
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Two types of log files are created by NICON in the same folder where NICON main .vi file is 

located.  

1. Analog IO_xxxxxxxx.log. Note that ‘xxxxxxxx’ shows the month, date, hour, and the 

minute (i.e. 11011919 means for file was created in Nov 1st at 19:19). 

Seven columns are recorded in these files: 

A. Column 1: Clock time when the data is recorded. Time increment for recording data 

is based on the Analog I/O logging rate (ms), specified in the Control tab, in the 

Control Panel. 

B. Column2: This column shows the actuator stroke command. Note that this shows 

the actual actuator stroke (not accounting for the offset). 

C. Column3: Output voltage to the controller, at the specified time in Column 1, which 

identifies the displacement command. 

D. Column4: Input voltage from the controller, which identifies the measured 

displacement at the specified time in Column 1. The actual stroke displacement can 

be calculated by multiplying this number with the conversion factor. 

E. Column5: This column shows the voltage input from the load cell, at the specified 

time. 

F. Column6: Measured displacement of the specimen. 

G. Column7: Measured force at the specified time. 

2. Network_xxxxxxxx.log. The same description above applies to ‘xxxxxxxx’ for the 

Network .log file as well. In the Network Log file, data is recorded at every increment at 

which OpenSees sends target displacement to NICON and when NICON sends measured 

displacements and forces to OpenSees.  

Five columns are recorded in these files: 

A. Column1: Time of communication. 

B. Column2: State of communication (Sent vs. Received) 

C. Column3: Communication command mode. CMD 3, shows that a new 

displacement command is sent from the integration module. CMD 10-Recevied 

shows that the new command is received in NICON. CMD 10-Sent, shows that the 

feedback is sent back to the integration module. CMD 99 shows the final step of 

the simulation and identifies that the simulation has ended. 

D. Column4: This column shows the command/measured displacements, for each 

communication state, in each step.  
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E. Column5: This column shows the measured force, for the corresponding 

communication state, in each step.  

9.8   HYBRID SIMULATION RESULTS 

An experimental hybrid simulation is carried out on Example Structure III, presented in Section 

2.4. The structure is subjected to the simulated excitation, discussed in Section 2.4.3. 

The OpenSees script discussed in Section 9.5.1, which is provided in the example files, is used as 

the integration module. A physical spring is used to represent the substructure module, as discussed 

in Sections 9.5.2, and 9.6. Using NICON, which was discussed in length in Section 9.7, 

displacement commands from the OpenSees integration module are communicated to the actuator 

controller, and applied to the physical substructure. Afterwards, the displacement/force feedbacks 

from the physical substructure are communicated from the actuator controller to NICON, and from 

NICON to the numerical model. This loop is carried out in each analysis step, during the hybrid 

simulation. 

Using the steps provided in section 9.7.2, the experimental hybrid simulation is performed. Figure 

9. 20 shows a comparison of the results, obtained from the standalone OpenSees model, with the  

results obtained from the experimental hybrid simulation. The result comparison is carried out in 

terms of displacement time-histories at node 2. Similarly, Figure 9. 21 shows the displacement 

time-history for node 3. 

 

Figure 9. 20: Comparison of the Displacement Time-Histories at Mass 1 
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Figure 9. 21: Comparison of the Displacement Time-Histories at Mass 2 
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CHAPTER 10. ANALYTICAL HYBRID SIMULATION 

OPENSEES – VECTOR2 

10.1 INTRODUCTION 

One of the unique set of programs that are currently available within the UT-SIM framework are 

the VecTor suite of programs [Vecchio, 2017]. An example on response evaluation of a shear 

critical beam, using VecTor2 [Wong et al., 2013], is provided by Vecchio and Shim [2004] which 

demonstrates the unique capabilities of the VecTor programs. Detailed steps for reproducing the 

results of the example by Vecchio and Shim [2004] is provided in Appendix A. 

The integration module Cyrus has been developed, within the UT-SIM framework, by Sadeghian 

et al. [2015] for performing multi-platform simulations in which the substructures consist of 

VecTor suite of programs (VecTor2, VecTor3, VecTor4, VecTor5, and VecTor6). This 

development facilitates an efficient use of the VecTor programs and takes advantage of their 

different features, while keeping the numerical model efficient. Examples of such applications is 

provided by Sadeghian et al. [2015].  

The capabilities of the UT-SIM framework has been extended such that VecTor FE models can 

act as substructure modules in conjunction with any of the FE packages acting as integrat ion 

modules within the UT-SIM framework. In this Chapter, the step by step procedure for conducting 

analytical hybrid simulation by coupling an OpenSees [McKenna et al., 2000] model, as the 

integration module, with a VecTor2 [Wong et al., 2013] model, representing the substructure 

module, is presented. The procedure for using other VecTor programs (VecTor3, VecTor4, 

VecTor5, and VecTor6) as substructure modules is analogous to that presented. 

10.2 COMMUNICATION OVERVIEW 

Shown in Figure 10. 1, is a schematic illustration on how the communication is established in 

numerical multi-platform hybrid simulations in which an OpenSees model acts as the integrat ion 

module, and one or more VecTor2 models act as numerical substructures. 

In order to use OpenSees as the integration module, an OpenSees element termed as SubStructure 

element has been defined and implemented in OpenSees platform. The SubStructure element is 

defined to exchange data with the substructure module. Information of the substructure element, 

and the interface nodes, as defined in the integration module, are read from the .txt file 
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‘Structfile.txt’. The ‘Structfile.txt’ file can be specified/edited by the user, in the same folder where 

the OpenSees model representing the integration module is located. In its application with 

VecTor2, the SubStructure element does not require the user to specify the ‘Kinit.txt’ file. Instead, 

the VecTor2 substructure module is able to provide the OpenSees integration module with its 

initial stiffness using the PARDISO [2014] library. 

 

Figure 10. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulations with an OpenSees Integration Module and VecTor2 Substructure Modules  

Contrary to Chapter 3, there is no need to use NICA for externally controlling the substructure 

analytical model, in VecTor2. The substructure, represented by VecTor2, can directly react to 

commands from the integration module. Communication between the SubStructure element, 

defined in OpenSees, and the substructure module, is enabled by UTNP, which is complied within 

a Dynamic Link Library, DataExchange.dll. 

10.3 EXAMPLE STRUCTURE 

The example structure used in this Chapter is Example Structure II, described in Section 2.3. The 

sub-structuring scheme is the same as that described in Chapter 2, Section 2.3.2. The structure is 

subjected to the earthquake ground motion, described in Section 2.3.3.  

10.4 VECTOR 2 ANALYSIS PROGRAM 

10.4.1 Background 

VecTor2 is a two-dimensional finite element modeling computer program, developed for nonlinear 

analysis of reinforced concrete structures, at the University of Toronto [Wong et al., 2013] and is 

part of the VecTor suite of programs [Vecchio, 2017]. VecTor2 uses a smeared crack model, and 

employs the Modified Compression Filed Theory (MCFT) [Vecchio and Collins, 1986] and the 
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Disturbed Stress Field Model (DSFM) [Vecchio, 2000; 2001] constitutive formulations for finite 

element modeling and analysis of reinforced concrete structures. 

Finite element modeling in VecTor2 is carried out by generating input .txt files. The program 

FormWorks 3.9 is a preprocessor developed at the University of Toronto, which provides the user 

with a visual interface, to ease the process of finite element modeling with VecTor2. 

For post processing of the finite element analyses, carried out in VecTor2, the post-processor 

program Augustus can be used, which is developed at the University of Toronto [Bentz, 2017] 

10.4.2 Access to VecTor2 Program Suite  

The example files include all the necessary files for developing a VecTor2 finite element model, 

using FormWorks pre-processor, and for post-processing of the results, using Augustus. The use 

of FormWorks and Augustus does not require any installation. In order to start a VecTor2 model 

in FormWorks, locate the ‘Analysis Programs’ subfolder, in the example folder. Run the 

‘FormWorks 3.9.exe’ file to start FormWorks. 

Upon running any VecTor2 finite element model, a subfolder will be created in the same folder 

where the FormWorks .fwx file is stored. The newly created folder contains a .job file. The name 

of the .job file is VecTor.job by default. For post-processing of the results, run the Augustus.exe 

file, and open the recently generated .job file for the model. 

10.5 PARDISO SOLVER PROJECT 

10.5.1 Background 

In order to carry out analytical hybrid simulations, using VecTor2 substructural modules, the 

program PARDISO Solver Project [2014] must be downloaded and installed on the operating 

system. The PARDISO solver package is a high-performance and memory efficient software that 

can be used for solving large sparse symmetric and unsymmetric linear systems of equations. 

PARDISO Solver can be used on shared-memory and distributed-memory multiprocessors. 

10.5.2 Procedure for Licensing 

The following outlines the procedure for downloading and installation of the Academic version of 

PARDISO Solver Project: 

1. Go to http://www.pardiso-project.org/. 

2. Download the academic license. The procedure is self-explanatory. 

3. When completing the forms, the website asks for the user’s name. Specify the computer 

username as the user’s name. 

4. After completing the procedure, the user will receive an email from the PARDISO project 

with the download link and the license key. 

http://www.pardiso-project.org/
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5. Copy the license key into a .txt file named ‘pardiso.lic’. This file must be placed in the 

same folder where the VecTor2 substructure is located. 

10.6 OPENSEES STANDALONE MODEL 

10.6.1 OpenSees Modeling Assumptions 

First, the structure as a whole is modeled in OpenSees Platform. The standalone OpenSees script 

is provided in the example files. Fiber sections are used to capture the flexural/axial behavior of 

the members. A Concrete02 Material model is used for modeling the concrete fibers and Steel02 

Material is used to model the reinforcements. ForceBeamColumn nonlinear elements with 5 

integration points are used to model each frame element. Using the Section Aggregator command, 

an elastic shear behavior is taken into account for the frame members, in addition to the 

flexural/axial behavior. The periods of the first and the second modes are calculated to be 0.320, 

and 0.156 seconds, respectively. A Rayleigh damping matrix is constructed by assuming 5% of 

critical damping in the first and the second mode. 

The structure is subjected to record M6C1 [Atkinson, 2009], with a scale factor of 0.78, to match 

the Vancouver uniform hazard spectrum (UHS), as described in Section 2.3.3, in Chapter 2. Direct 

time-step integration of the equations of motion is carried out, with a time-step of 0.001 seconds. 

10.6.2 Results 

Figure 10. 2 shows the displacement time-histories as obtained from the standalone OpenSees 

model. Plastic hinges are formed at the base of the first story columns, as well as both ends of the 

first story beam. The rest of the members are effectively elastic, with limited plastic deformations. 

Figure 10. 3 (a) shows the response of the first story column, in terms of base column moment-

curvature hysteretic response. Figure 10. 3 (b) shows the response of the first story beam in terms 

of end moment-curvature hysteretic response. 

 

Figure 10. 2: Displacement Time-Histories Obtained from the Standalone OpenSees Model 
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(a) (b) 

Figure 10. 3: Hysteretic Response of Selected Frame Members  

10.7 INTERFACE NODES 

10.7.1 Definition   

Figure 10. 4 shows the decomposition of the integrated numerical model, into the numerica l 

integration and substructure modules. For modeling the members, in OpenSees platform, frame 

elements (forceBeamColumn elements) are used. However, for modeling the beam-column joint 

subassemblies in VecTor2, which act as the substructural module, continuum membrane elements 

are used. In the VecTor2 substructure, the length of the beam is taken as one meter from the column 

centreline, equivalent to 800mm of clear length. The same length of column is modeled in the 

substructural VecTor2 model. 

 

 

= 

 

 

+ 

 

(a)  (b)  (c) 

Figure 10. 4: Decomposition of the Example Structure into Analytical Substructures – (a) Integrated Numerical 

Model, (b) OpenSees Integration Module, and (c) VecTor2 Substructure Module 
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Naturally, if the control joints from the OpenSees model are connected only to the center point of 

the membrane elements, modeled in VecTor2, the membrane elements will experience unrealis t ic 

stress concentrations.  

In such applications, an interface element must be defined for beam to membrane (B-M) 

connections. Some of the studies that focus on the development and implementation of B-M 

interface elements include the ones by Kim and Hong [1994], McCune et al. [2000], Ho et al. 

[2010], and Wang et al. [2014]. Sadeghian et al. has also developed B-M elements for mult i-

platform simulations using the VecTor suite of programs.  

In the present example, vertical rigid interface elements are used in the OpenSees model to connect 

the beam elements in OpenSees to membrane elements in VecTor2, as shown in Figure 10. 5. In 

order to avoid any unrealistic influence from the rigid interface elements on the behaviour of the 

members, a long horizontal distance of the beam-column joint subassemblies is modelled in the 

VecTor2 substructure. This is done to distance the interface elements from the critical regions 

susceptible to shear cracks.  

For this purpose, the number of interface nodes, in OpenSees, is increased such that it matches the 

mesh topology of the VecTor2 substructural module. In addition, rigid elements are created 

between the interface joints in the OpenSees integration module. Figure 10. 5 shows the typical 

rigid element between the interface nodes, used for the current example.  

 

 

 

Figure 10. 5: Schematic Illustration of Rigid Elements and the Additional Nodes Introduced at the Interface Nodes  

 

VecTor 2 Mesh 

Additional Nodes/Rigid Element 

Defined in OpenSees 

OpenSees Frame Element 



105 

10.7.2 Numbering Scheme   

The OpenSees integration module and the VecTor2 substructure module are connected through 6 

interface locations. At each location, there are 9 interface nodes, as shown in Figure 10. 5.  For 

ease of reference, it is useful to define a numbering scheme for the rigid nodes. The labels for each 

interface location is shown in Figure 10. 6 (a). Numbering for vertical interface nodes is from 

bottom to top, as shown in Figure 10. 6 (b). Numbering of horizontal interface nodes is from left 

to right, as shown in Figure 10. 6 (c). Therefore, each node can be referred to with a unique name 

consisting of the interface label (A to F), and the node number (1 to 9). 

 

 

 

(b) 

 

 

 

(a) (c) 

 

Figure 10. 6: Representation of the Nodal Reference Names – (a) Interface Location Labels, (b) Vertical Nodal 

Numbering Scheme, and (c) Horizontal Nodal Numbering Scheme 
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10.8 EXAMPLE FILES 

Four main folders are included in the example files, including: 

1. The folder ‘Standalone OpenSees’ contains the script for the standalone OpenSees model, 

described in Section 10.6, as well as all the necessary files.  

2. The folder ‘V2 Sub’ contains the .fwx file of the VecTor2 substructure model, which can 

be opened with FormWorks pre-processor.  

3. The folder ‘OS’ contains the Integration module OpenSees .tcl script, as well as all the 

necessary files for hybrid simulation execution. 

4. The folder ‘SS’ contains the VecTor2 substructure model, as well as all the necessary files 

for the execution of hybrid simulation. 

For any general numerical OpenSees – VecTo2 hybrid simulation, it is recommended that the 

original example folders are used, with updating certain files, as explained in the following. 

10.9 VECTOR2 SUBSTRUCTURE MODEL 

Figure 10. 7 illustrates a screenshot of the VecTor2 model, representing the beam-column joint 

subassemblies of the first story that act as the substructure model. 

A 50x50 mesh size is used for the VecTor2 model. Therefore, a total of 9 nodes will be generated 

along the depth of 400 mm deep sections, as illustrated in Figure 10. 5.  

The in-plane reinforcing bars are defined using discrete truss elements, and the out-of-plane 

reinforcing bars are defined as smeared reinforcements. 

 

Figure 10. 7: A Screenshot of the VecTor2 Substructure Model 

The material properties are kept as VecTor2 defaults. Specifically, Hognestad parabola 

[Hognestand, 1951] is used to model the pre-peak response of concrete in compression. Modified 

Park-Kent [Kent and Park, 1971] model is used to simulate the post-peak response of concrete. 
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For compression softening the Vecchio 1992 [Vecchio and Collins, 1993] model is used. Modified 

Bentz 2003 [Sato and Vecchio, 2003; Bentz, 1999] model is used to model Tension Stiffening. 

Tension softening is modelled using a bilinear model. Kupfer/Richart confinement model [Richart 

et al., 1928; Kupfer et al., 1969, Kupfer and Gerstle, 1973] is used for confined concrete. Complete 

assumptions can be viewed in the VecTor2 file that is included with the example files. Detailed 

descriptions for the material responses are provided in Wong et al. [2013]. 

Upon completion of the VecTor2 model, the node numbers can be viewed in FormWorks. It is 

important to take note of the node numbers that are automatically assigned to each node in 

FormWorks. The node numbering may be changed at a later stage if desired, however, in the 

present example, the automatically generated node numbers are kept. Table 10. 1 shows the 

generated node numbers, by VecTor2, for each interface node. The nodal reference numbers are 

the unique names defined in Section 10.7.2.  

Table 10. 1: Interface Nodal Reference Numbers vs. Assigned Numbers 
Interface A Interface B Interface C Interface D Interface E Interface F 

Ref. 

Name 
Num. 

Ref. 

Name 
Num. 

Ref.  

Name 
Num. 

Ref.  

Name 
Num. 

Ref.  

Name 
Num. 

Ref.  

Name 
Num. 

A1 1 B1 505 C1 514 D1 658 E1 81 F1 738 

A2 3 B2 506 C2 515 D2 660 E2 82 F2 739 

A3 83 B3 507 C3 516 D3 740 E3 123 F3 780 

A4 124 B4 508 C4 517 D4 781 E4 164 F4 821 

A5 165 B5 509 C5 518 D5 822 E5 205 F5 862 

A6 206 B6 510 C6 519 D6 863 E6 246 F6 903 

A7 247 B7 511 C7 520 D7 904 E7 287 F7 944 

A8 288 B8 512 C8 521 D8 945 E8 328 F8 985 

A9 329 B9 513 C9 522 D9 986 E9 369 F9 1026 

 

10.10 OPENSEES INTEGRATION MODEL 

The script for the OpenSees integration module is provided in the example files. The assumptions 

as well as the analysis are similar to that described in Section 10.6. The only difference is that rigid 

elements and additional nodes are defined in the OpenSees integration module, at the interface 

node, as described above.  

In order to link OpenSees with VecTor2, the SubStructure element module, which is defined and 

implemented in OpenSees, is used.  

 element SubStructure $Tag -file Structfile.txt; 
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where $Tag is the element tag used in the model. The ‘Structufile.txt’ contains information 

regarding the interface joints and is placed in the OpenSees integration module subfolder, as 

explained in the following sections. 

It is imperative that the interface nodes, defined in OpenSees, have consistent numbering with their 

corresponding interface nodes in VecTor2. Therefore, the same numbers, as provided in Table 10. 

1, are used for the interface nodes in the OpenSees integration module. 

Note that for communication with VecTor2, the base units in the OpenSees integration module 

must be N and mm. 

10.11 HYBRID SIMULATION  

After copying the example files to the operating system, and completing the OpenSees integrat ion 

module and the VecTor2 substructure module, using the steps outlined in each section, the 

numerical hybrid simulation can be carried out. 

10.11.1 Requirements for the Substructure Module 

The following are required to have VecTor2 as a substructure module: 

1. In the folder containing the VecTor2 substructure module (folder ‘SS’ in the example files), 

delete all the output files generated from previous analyses. 

2. Place the ‘pardiso.lic’ file, that was created in Section 10.5.2, in the ‘SS’ folder. 

3. Having the VecTor2 model representing the substructure module opened in FormWorks, 

generate the Structure File of the VecTor2 model. Keep the default name.  

4. Save the generated Structure File of the substructure module VecTor2 model, in the ‘SS’ 

folder that contains the substructure model files. 

5. Having the substructure module VecTor2 model opened in FormWorks, generate the job 

File of the VecTor2 model. Keep the default name.  

6. Save the generated job File of the substructure VecTor2 model, in the ‘SS’ folder that 

contains the substructure model files. Note that the job File can be used to modify the 

modeling assumptions, such as constitutive models, steps, etc., at a later stage, if desired. 

7. Ensure that the number of analysis steps that is specified for the VecTor2 model, in the job 

File, is greater than the total steps required for the analysis. 

8. In line 39 of the Job File, change the modeling format to 3. This specifies that the VecTor2 

model will communicate with an OpenSees integration module. 

9. Open the ‘NICON.txt’ file, in the ‘SS’ folder. In the first row, the total number of DOFs of 

the interface nodes is specified. The current example has a total of 54 interface nodes. Each 
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node has translational DOFs in X and Y directions. Therefore, the total number of active 

DOFs is specified as 108. 

10. In the proceeding lines, three numbers are specified. The first number is the nodal number 

of the interface node, as defined by VecTor2. The second and the third numbers specify 

the transfer of forces and displacements in the X and Y directions, respectively. For 

instance, ‘81 1 1’ means that at interface node 81, force and displacements are 

communicated in the X and Y directions from the integration module, to the substructure 

module. Figure 10. 8 shows a screenshot of the ‘NICON.txt’ file, for the example structure. 

Note that only a limited number of nodes are included in the Figure. 

Important Note: the interface nodes must be specified with the same sequence, in the 

integration module and the substructure module, and in an ascending order. 

 

Figure 10. 8: A Screenshot of the ‘NICON.txt’ file for the Example Structure 

 

Figure 10. 9: A Screenshot of the Typical Folder Containing the VecTor2 Substructure Module Files  
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11. Ensure that the rest of the files, that were included with the original example and are 

required for communication between the OpenSees integration module and the VecTor2 

substructure module, are present in the ‘SS’ folder. Figure 10. 9 shows an example of the 

files located in the ‘SS’ folder. 

10.11.2 Requirements for the Integration Module 

The following are required to have OpenSees as the integration module: 

1. Place the OpenSees integration module script in the ‘OS’ folder, along with all the 

necessary files for running the analysis. 

2. Open the ‘Structfile.txt’ and edit it for the example structure. The port number that will be 

specified in this file will be used during the execution of the analysis. 

3. In the connected node tag section, the NumNode is the number of interface nodes. In the 

current example, 54 interface nodes are specified.  

4. In the proceeding line, specify the interface nodal numbers, as specified in OpenSees 

integration module. Note that the interface nodes specified in OpenSees must have 

consistent nodal numbers with their associated interface nodes in VecTor2. In addition, it 

is imperative that the nodes are listed with the same sequence as they were specified in the 

‘NICON.txt’ file, in step 10 of Section 10.11.1, and in an ascending order. Figure 10. 10 

shows a screenshot of the ‘Structfile.txt’, following the steps. 

 

Figure 10. 10: A Screenshot of the ‘Structfile.txt’ for the Example Structure 

5. Ensure that the rest of the files, that were included with the original example are present in 

the ‘OS’ folder. These files are required for communication between the OpenSees 



111 

integration module and the VecTor2 substructural module. Specifically, the .dll files must 

be present in the ‘OS’ folder. Figure 10. 11 shows an example of the files located in the 

‘SS’ folder. 

 

Figure 10. 11: A Screenshot of the Typical Folder Containing the OpenSees Integration Module Files  

10.11.3 Hybrid Simulation Execution 

Upon completion of the above steps, the numerical hybrid simulation can be executed using the 

procedure outlined below: 

1. Run the ‘VT2-14JAN16.exe’ file, in the ‘SS’ folder. 

2. Specify the port number (i.e. 8090). 

3. After seeing the ‘waiting for connection’ message, execute the OpenSees integrat ion 

module from the ‘OS’ folder. 

4. The simulation will start. 

10.12 RESULTS 

Upon completion of the analysis. The behavior of the substructure module can be viewed at each 

loading time-step in the post-processor Augustus. Figure 10. 12 shows the deformed shape and the 

crack pattern of the beam-column joint sub-assemblies at two consecutive displacement peaks, 

during the response of the structure. The performance of the beam-column joints can conveniently 

be assessed in Augustus, in terms of other response parameters, such as reinforcement stresses, 

principal stresses, principal strains, crack width, etc. In addition, the interface nodal forces and 

displacements can be viewed in the ‘Comm_log.log’ file that is generated in the ‘OS’ folder 

containing the integration OpenSees model. 

The periods that are obtained from the hybrid model are 0.351, and 0.118 seconds for the first and 

the second modes, respectively.  
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Figure 10. 13 shows the displacement time-histories for the first and the second stories as obtained 

from the hybrid model. 

 
(a) 

 
(b) 

Figure 10. 12: Deformed Shape and Crack Pattern of the Beam-Column Joint Sub-Assembly, as Obtained from 

Augustus - (a) Response at t = 5.625 seconds, and (b) Response at t = 5.920 seconds 

Figure 10. 14 shows a comparison of the results, in terms of first floor displacement time history,  

obtained from the standalone OpenSees model and from the hybrid model. As can be observed, at 

the beginning of the response, the results are close. However, as the structure experiences more 

loading cycles, the response of the two analyses start to depart from one another. The hybrid model, 

which employs membrane elements in VecTor2, has a progressively softer response, as the 

structure undergoes more loading cycles. This is expected as VecTor2 captures damage more 

effectively. Specifically, the difference that is observed in the response can be attributed to the 

following: 
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1. In the hybrid model, the beam-column joints are modeled using membrane elements, while 

in the OpenSees model the whole structure is modeled with frame elements.  

2. In the OpenSees model shear behavior is captured as a linear elastic response. However, 

VecTor2 captures nonlinear shear deformations throughout the response, as well. 

3. In addition to mere shear deformations, additional damage caused by shear effect in 

concrete and the formation of compressive struts is ignored in the OpenSees model. 

4. Response mechanisms such as compression softening, tension stiffening, etc., are not 

modeled in the OpenSees model while the response in the VecTor2 model is affected by 

them. 

It is of interest to note that just the elastic fundamental period of the structure is changed from 

0.320 seconds, in the standalone OpenSees model, to 0.351 seconds, in the hybrid model.  

 

Figure 10. 13: Displacement Time Histories Obtained from the Hybrid Simulation 
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Figure 10. 14: Displacement Time Histories Comparison 
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CHAPTER 11. ANALYTICAL HYBRID SIMULATION 

OPENSEESSP (SCINET) – OPENSEES  

11.1 INTRODUCTION 

The general goal in most structural analyses and structural modeling applications is to capture the 

response of the structure, with a certain level of accuracy, while trying to maintain an effic ient 

model with acceptable level of simplicity. Such approach will usually limit the required computing 

power for the analysis. However, in some structural and earthquake engineering applications such 

as capturing the seismic response of a nuclear power plant or soil-structure interaction between a 

concrete tunnel and the surrounding soil medium, precise seismic performance assessment of the 

structure, demands complex structural models. In such cases, the use of desktop computers with 

normal computing power may not be efficient for the analysis and high performance computers 

(HPC) are preferred. The application of multi-platform hybrid simulation frameworks to such 

complex problems, in structural and earthquake engineering research, further requires robust and 

powerful computational tools. Therefore, it is of importance that the application of UT-SIM 

framework is extended such that analytical models as integration modules or complex 

substructural modules can be constructed and executed on HPCs. 

In this Chapter, a step-by-step procedure for conducting an analytical hybrid simulation by 

coupling an OpenSeesSP [McKenna and Fenves, 2007; McKenna et al., 2000] (SciNet) model, as 

the integration module, with an OpenSees model, as the substructural module, is presented. In this 

particular example, the integration module is executed on a HPC while the substructure module is 

executed on a desktop computer. The procedure for conducting a hybrid simulation where both the 

integration and the substructural modules are executed on a HPC, and the procedure where only 

the sub-structural module is executed on a HPC, are completely analogous.  It must also be noted 

that substructures developed using the other structural analysis programs, for which 

communication modules are developed within the UT-SIM framework, can also be executed on a 

HPC, in a completely analogous manner. 

In this demonstration, the HPC is accessed through SciNet [2017]. For more information regarding 

SciNet, visit https://www.scinethpc.ca/. In order to establish a connection with the HPC, use of a 

remote access program is required. Any program can be used for this purpose. In the current 

example, the program ‘MobaXterm’ [2017] is used. Instructions for downloading and using the 

program ‘MobaXterm’ are provided in this Chapter as well. 

https://www.scinethpc.ca/
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11.2 COMMUNICATION OVERVIEW 

Shown in Figure 11. 1, is a schematic illustration on how the communication is established in 

numerical multi-platform hybrid simulations in which an OpenSeesSP model, on a HPC, acts as 

the integration module, and one or more OpenSees models act as numerical substructures. 

The communication system in such a case is completely analogous to the case presented in Chapter 

3. The only difference is that before establishing the TCP-IP connection between the integrat ion 

module and the substructure module, through UTNP (DataExchange.dll), a server shell tunnel is 

created for exchange of data between the HPC, from which the OpenSeesSP integration module is 

running, and the desktop operating system, from which the OpenSees substructure module is 

running. 

 

Figure 11. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulation with an OpenSeesSP (on HPC) Integration Module and OpenSees Substructure Modules  

11.3 EXAMPLE STRUCTURE 

Example Structure I, described in Chapter 2 is used for the simulation. The general background, 

the analysis assumptions, the earthquake ground motion, and the decomposition of the system into 

analytical sub-structures is identical to that presented in Chapter 3.  

In fact, the numerical integration and the substructure modules are identical to those presented in 

Chapter 3. The only difference in this chapter is that the OpenSees integration module is executed 

on a HPC. 

11.4 PRELIMINARY STEPS FOR ACCESSING THE HPC  

11.4.1 Steps for Requesting a SciNet Account 

As previously discussed, access to the HPC is done through SciNet. The following procedure can 

be carried out for requesting a SciNet account: 
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1. Go to the login page of the ‘Compute Canada’ website. This page can be accessed from 

https://ccdb.computecanada.ca/security/login. 

2. If you do not have an account, create an account. The registration procedure is self-

explanatory, however, the procedure is briefly outlined: 

A. Click on the Register button next to the “Sign in” button. 

B. Read and agree to the terms and conditions. 

C. Fill the subsequent forms, and enter the CCRI of your sponsor. 

D. Submit the application. 

3. After completion of the steps, an account on the ‘Compute Canada’ website is created. 

4. To have access to the Super Computer, a consortium account is required. To request a 

consortium account, in the main page of the ‘Compute Canada’ website, go to My Account 

> Apply for a Consortium Account. Click on the ‘Apply’ button to request the account 

(SciNet for University of Toronto users). 

5. The SciNet account will be activated in a few days and the information about the account 

will be sent to the user. 

11.4.2 Remote Access Program MobaXterm 

For accessing the HPC, use of a remote access program is required. In the current example, the 

program ‘MobaXterm’ is used for this purpose. In order to download and install MobaXterm: 

1. Go to http://mobaxterm.mobatek.net. 

2. Download MobaXterm installation file and complete the installation. 

11.4.3 Accessing the SciNet Account via MobaXterm 

To access a SciNet account, open MobaXterm and carry out the following steps: 

1. Click on Session on the top left corner (or start session) 

2. Click on SSH (Secure Shell) Session. 

3. Input the address for the remote host (for University of Toronto users: 

login.scinet.utoronto.ca). In addition, input the username that was used for Compute 

Canada Registration. 

4. After going to the main window, the folder with your name will be shown. Input the 

password that SciNet has sent you. 

5. Upon the completion of these steps, the connection with SciNet will be established, and 

the user will have access to the HPC. 

 

https://ccdb.computecanada.ca/security/login
http://mobaxterm.mobatek.net/
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11.4.4 OpenSees Source Code Version 

In order to execute OpenSees scripts on the HPC, the OpenSees source code version that is stored 

using Apache Subversion (SVN) must be used.  The following procedure can be followed for this 

purpose: 

1. Download the OpenSees source code version that is stored using Apache Subversion 

(SVN) software. This can be done by entering the following command in the command 

prompt in the home folder in MobaXterm: 

svn co svn://peera.berkeley.edu/usr/local/svn/OpenSees/trunk OpenSees 

The OpenSees SVN source code will be downloaded. For more information about 

OpenSees SVN, go to http://OpenSees.berkeley.edu/OpenSees/developer/svn.php. 

2. Upload the OpenSees library to your home folder. This can be done by dragging the files 

into the user’s folder within the directory tree in MobaXterm visual interface. The library 

files are included in the ‘lib’ folder that is accompanied with the example files. 

3. Drag the ‘bin’ folder to the home directory as well. 

4. Open the ‘bin’ folder, right-click on OpenSeesSP icon, and select ‘Permissions’. 

5. It is imperative that the ‘Execute’ option is checked in the permission window as shown in 

Figure 11. 2. This ensures that the user can execute OpenSees scripts. 

 

 

Figure 11. 2: OpenSeesSP Permission Options  

 

http://opensees.berkeley.edu/OpenSees/developer/svn.php
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11.5 EXECUTION OF STANDALONE OPENSEES MODELS ON THE HPC VIA MOBAXTERM 

In order to execute analytical hybrid simulations using the HPC, familiarity with the remote access 

program (in the current example MobaXterm) is important. MobaXterm documentation can be 

accessed at http://mobaxterm.mobatek.net/documentation.html.  

However, in order to familiarize the users with MobaXterm, the standalone OpenSees model is 

first analyzed on the HPC via MobaXterm and the steps are outlined. 

11.5.1 Analysis Execution 

1. After completion of all the preliminary steps, discussed above, open MobaXterm. 

2. Select the desired cluster (gpc) for performing the analysis from gpc01 to gpc08, by 

entering ‘ssh gpc03’. 

3. At this stage, access to the domain is established. 

4. Type ‘cd $HOME/’ and then press Tab to go to user’s main folder. 

5. Make a folder, which contains the OpenSees file and all the necessary files for running the 

OpenSees simulation on the operating system. An arbitrary name can be assigned to the 

folder. The name ‘HS’ is used in this example. Add a ‘job.sh’ file to the ‘HS’ folder. This 

file must contain the processing nodes, wall time, queue, and the job output file. An 

example of the OpenSees folder is shown in Figure 11. 3. The following is an example of 

what the job.sh file will contain: 

#!/bin/bash 

#PBS -l nodes=1:ppn=8,walltime=00:20:00 

#PBS -q debug 

#PBS -N ex 

 

cd $PBS_O_WORKDIR 

~/bin/OpenSeesSP example.tcl 

 

Figure 11. 3: Example of the OpenSees Folder with the Necessary Files and the ‘job.sh’ File 

 

http://mobaxterm.mobatek.net/documentation.html
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The role of each line of the script given in the ‘job.sh’ file is provided below: 

A. ‘ppn=8’ means that we are using one 8-core processing node to run the simulation.  

B. The wall time specifies the required time for the analysis.  

C. The ‘-q debug’ is for debugging the OpenSees script. ‘q’ specifies the type of queue 

line.  

D. ‘N’ is for the job output folder. Upon completing an OpenSees analysis, using the 

HPC, two sub-folders will be created. Their names will be ‘ex.e1jobnumber’, and 

‘ex.ojobnumber’. Note that ‘e’ stands for error, and ‘o’ stands for output. ‘ex’ is the 

job name, which is specified after ‘-N’ in the ‘job.sh’ file. 

E. The last line of the script is ‘~/bin/OpenSeesSP example.tcl’. The symbol ‘~’ refers 

to the home directory (it is used to call upon the home directory). The bin folder 

contains the OpenSeesSP execution file, which is necessary for running the analysis. 

This contains the regular OpenSees commands as well as parallel commands for the 

HPC. The “example.tcl” is the name of the OpenSees .tcl file. 

6. After making the OpenSees folder, copy this folder to the home domain in MobaXterm. 

7. In order to be able to run the analysis, the folder must be transferred from the Home domain 

to the Scratch folder.  

8. First, go to the Scratch folder. This can be done by the following command: ‘cd 

$SCRATCH/…’. 

9. Copy the folder to the current domain: ‘cp –r $HOME/../Foldername .’.  

10. Open the copied folder with the command: ‘cd foldername’. 

11. Make the .sh file readable by unix with the command: ‘dos2unix file.sh’. 

12. Change mode of the file to be read and written on the Scratch domain, by using the 

command: ‘chmod 777 file.sh’ 

13. Submit the job with the command: qsub file.sh. This will provide the user with the job 

number. 

14. The job should start running. 

15. To access the status of the recently submitted jobs, enter ‘qstat –u username’. 

Figure 11. 4 provides an example of the above procedure as inputted in MobaXterm. 

16. Upon completion of the analysis, the output files/folders as defined in the OpenSees script 

will be created in the ‘HS’ folder, located in the Scratch folder.  

17. In order to access the Output files, the user must copy them to Home folder.  
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18. In order to do this, first locate Home folder. This can be done by using the command: ‘cd 

$HOME’. 

19. Copy the folder to the current domain: ‘cp –r $HOME/../Data CM .’. Note that the 

OpenSees outputs, in the current example, are stored in the folder named ‘Data CM’, as 

specified in the scripts provided in the example files. 

 

Figure 11. 4: Example of the Procedure for OpenSees Model Execution on MobaXterm 

20. Upon completion of the above steps, the results of the OpenSees model are stored in the 

Home folder of the user and can be accessed from the directory tree, in the visual interface 

as shown in Figure 11. 5. 

 

Figure 11. 5: Results of the OpenSees Analysis Accessible from the Home Directory Visual Interface  

Figure 11. 6 shows the commands for transferring the OpenSees analysis results to the Home 

folder, as explained above. 
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Figure 11. 6: Commands for Transferring the Results of the OpenSees Analysis to the Home Folder 

11.5.2 Results 

The results from the standalone OpenSees model, executed on the HPC are identical to that 

presented in Chapter 3, Section 3.7.2. 

11.6 EXECUTION OF THE EXAMPLE HYBRID SIMULATION ON THE HPC 

In the current example, the integration module is executed on a HPC, and the substructure module 

is run on the desktop computer. All inputs and information for using NICA are the same as those 

provided in Chapter 3. The only additional step in the current example is to link the HPC, on which 

the integration module is executed, with the desktop computer, on which the substructural module 

is executed.  

In order to link the HPC with the desktop computer, the steps outlined below can be followed: 

1. Download the example folder and all the accompanying files and store them in a convenient 

location in your computer. 

2. It is recommended that other hybrid simulations follow the same steps, and formatting of 

folders and sub-folders. 

3. The example folder includes four sub-folders namely, ‘Integration’, ‘Lib’, ‘NICA’, and 

‘SciNet’. 

4. The ‘Integration’ folder includes the integration module (in this case an OpenSees model), 

the ‘Kinit.txt’, and ‘Structufile.txt’, similar to Chapter 3. In addition, OpenSeesSP 

executable file should be placed in this folder. Figure 11. 7 shows a screenshot of the 

‘Integration’ folder.  

5. The ‘Lib’ folder contains the necessary files for communication and data exchange in the 

hybrid simulation. This folder and its contents will remain unchanged for other simulations. 

6. The ‘NICA’ folder includes the substructure module, which in the current example is the 

same OpenSees script as the one used in Chapter 3, and is provided in the example files. 

Also included in the ‘NICA’ folder are the NICA executable file, ‘DataExchange.dll’, and 

the “NICA.cfg” file. 
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Figure 11. 7: Integration Folder for the Example Hybrid Simulation 

7. For new examples, go to the ‘Integration’ folder and adjust the ‘Kinit.txt’ and 

‘Structfile.txt’ files in the same manner as explained in Chapter 3. In the current example, 

the ‘Kinit.txt’ file is identical to that in Chapter 3. Note that in the current example, the port 

number in ‘Structfile.txt’ is changed to 11999. Figure 11. 8 shows a screenshot of the 

‘Structfile.txt’ inputs, for the current example. 

 

Figure 11. 8: ‘Structfule.txt’ Inputs for the Example Structure 

8. The ‘SciNet’ folder includes the necessary files for establishing a connection between the 

HPC, from which the integration module is executed, and the desktop computer, from 

which the substructure is executed. 

9. Open MobaXterm. 
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10. Select the desired cluster (gpc) for performing the analysis from gpc01 to gpc08, by 

entering ‘ssh gpc03’. 

11. Create a folder ‘Scinet_Desktop’ and place sub-folders ‘Integration’ and ‘Lib’ in this 

folder.  

12. Copy this folder to the user’s $HOME folder in MobaXterm. This can be done by dragging 

the folder to the user’s $HOME domain in MobaXterm visual interface. 

13. Go to the user’s $SCRATCH folder, using the command: ‘cd $SCRATCH /…’ 

14. Copy the ‘Scinet_Desktop’ folder from the user’s $HOME domain to the $SCRATCH 

Folder. This can be done using the command: ‘cp –r $HOME/Scinet_Desktop .’. 

15. Store the ‘NICA’ folder on the desktop computer from which the substructure will be 

executed, at a convenient location. 

16. Store the ‘SciNet’ folder on the desktop computer from which the substructure will be 

executed, at a convenient location. 

17. Using a text editor, open the ‘NICA.cfg’ file. It is important that the port number here is 

the same as that specified in the ‘Structfile.txt’ file, in the ‘Integration’ folder. Figure 11. 

9 shows a screenshot of the inputs that are specified in ‘NICA.cfg’ file for the current 

example. 

 

Figure 11. 9: Inputs for NICA.cfg for the Example Structure 
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18. Submit an interactive job using the command: ‘qsub -l nodes=2:ppn=8,walltime=1:00:00 -

q debug –I’. Reference: https://wiki.scinet.utoronto.ca/wiki/index.php/Using_Paraview. 

The procedure for logging in could take some time. 

19. After logging into the interactive node, a hostname will be provided. It is important to make 

a note of the hostname at this stage, as it will be used in the next steps. Figure 11. 10 shows 

the inputs and the provided hostname in the current example. 

 

Figure 11. 10: Interactive Job Submission and the Provided Hostname 

20. After the connection is established, locate the ‘SSHTennelingL.bat’ file, in the ‘SciNet’ 

folder and run the file. If you receive a warning regarding the source of the connection, 

accept the connection by clicking on ‘Yes’.  

21. In the new window, type the SciNet login name. Next, type in the password provided by 

SciNet, as shown in Figure 11. 11. 

 

Figure 11. 11: Login Name and Password Request 

22. At this stage, the login node will appear. Figure 11. 12 shows the login node that will appear 

when the connection is established. 

23. In the Login Node, give the command: “"ssh -R 11999:localhost:11999 $hostname”. Note 

that $hostname was provided in step 19, and shown in Figure 11.10. In addition, the number 

11999, provided in this command, is the port number used in this example and should be 

consistent with that specified in ‘Structfile.txt’ and ‘NICA.cfg’ files. The connection will 

be established. At this stage, the user can type the commands in the Login Node window. 

24. Follow the same procedure as before, and copy the Integration folder and Lib folder to the 

Scratch directory if they are not already present there, i.e. $SCRATCH/Scinet_Desktop/. 

https://wiki.scinet.utoronto.ca/wiki/index.php/Using_Paraview
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25. Open the Integration folder in the SCRATCH domain: 

‘cd $SCRATCH/Scinet_Desktop/Integration/’ 

26. Input the following command: 

"export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/$SCRATCH/Scinet_Desktop/Lib" 

27. At this stage, hybrid simulation execution is possible. 

 

Figure 11. 12: Login Node after Connection is Established 

28. Run NICA.exe from the desktop computer. 

29. In the Login Node window type in ‘./OpenSeesSP HM.tcl’. Note that ‘HM.tcl’ is the name 

of the integration module used in the current example. 

30. Once the connection is established, press ‘enter’ in NICA.exe to run the analysis. 

31. Analysis will start. 

32. Using a procedure similar to that described in Section 4.1 transfer the folder/files 

containing the analysis results to the Home folder. 

11.7 HYBRID SIMULATION RESULTS 

The results of the analytical hybrid simulation are identical to those obtained in Chapter 3. 

Figure 11. 13 shows the top story lateral displacement time-histories, obtained from the complete 

model and from the analytical hybrid simulation. Figure 11. 14 shows the structure hysteretic 
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response when subjected to the scaled M6C1 record [Atkinson, 2009], obtained from both the 

complete model and from the analytical hybrid simulation. 

Note that the procedure described in this Chapter is applicable to other structural analysis 

programs, for which communication modules are developed within the UT-SIM framework, in a 

completely analogous manner. 

 

Figure 11. 13: Story Lateral Displacement TH from the Complete Model (Red), and the Hybrid Model (Blue) 

 

 

Figure 11. 14: Hysteretic Response Curves from the Complete Model (Red), and the Hybrid Model (Blue) 
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CHAPTER 12. ANALYTICAL HYBRID SIMULATION           

S-FRAME – VECTOR2 

12.1 INTRODUCTION 

S-FRAME [2013] is a structural analysis package which is widely used in the structural 

engineering industry. As part of the development of the UT-SIM framework [Huang and Kwon; 

UT-SIM, 2017] and in order to promote the use of multi-platform simulations in structural 

engineering practice, the capabilities of the UT-SIM framework was extended such that S-FRAME 

can be used as an integration module within the framework. Use of S-FRAME, as the integrat ion 

module, in conjunction with robust finite element packages within the UT-SIM framework, as 

substructure modules, will lead to greatly enhanced numerical models. This will result in a 

significantly improved performance assessment in structural engineering practice. Huang et al. 

[2017] have shown an example of such multi-platform performance assessment, where the 

performance of a high-rise structure, with core shear wall system with coupling beams and 

outriggers, was assessed in a multi-platform simulation. In the study by Huang et al. [2017] the 

coupling beams were modeled in VecTor2 as substructure modules and the rest of the structure 

was modeled in S-FRAME as the integration module. 

In order to assist structural engineers and researchers with such analyses, in this Chapter, step by 

step procedure for performing analytical hybrid simulation by coupling an S-FRAME model, as 

the integration module, with a VecTor2 [Wong et al., 2013; Vecchio, 2017] model, representing 

the substructure module, is presented. 

12.2 COMMUNICATION OVERVIEW 

Shown in Figure 12. 1, is a schematic illustration on how the communication is established in 

numerical multi-platform hybrid simulations in which an S-FRAME model acts as the integrat ion 

module, and one or more VecTor2 models act as numerical substructures. 

In order to use S-FRAME as the main integration module, a special constraint type, termed as 

VecTor2 constraint has been developed and implemented in S-FRAME to control the interface 

nodes.  In addition, the VecTor2 substructure module is able to provide the S-Frame integrat ion 

module with its initial stiffness using the PARDISO library [2014]. 
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The substructure, represented by VecTor2, can directly react to commands from the integrat ion 

module and there is no need to use the interface program NICA. Communication between the 

VecTor constraint, defined in S-FRAME, and the substructure module, is enabled by UTNP, which 

is complied within a Dynamic Link Library, DataExchange.dll. 

 

Figure 12. 1: Illustration of Communication and Data Exchange Architecture in Numerical Multi-Platform Hybrid 

Simulations with an S-FRAME Integration Module and VecTor2 Substructure Modules  

12.3 EXAMPLE STRUCTURE 

The example structure used in this Chapter is Example Structure II, described in Section 2.3. The 

sub-structuring scheme is the same as that described in Chapter 2, Section 2.3.2. A pushover 

analysis is carried out on the structure.  

12.4 VECTOR 2 ANALYSIS PROGRAM 

Background information and instructions to access VecTor2 analysis program is provided in 

Section 10.4. 

12.5 PARDISO SOLVER PROJECT 

Background information and instructions for downloading the PARDISO solver package is 

provided in Section 10.5. 

12.6 S-FRAME STANDALONE MODEL 

First, the structure as a whole is modeled in S-FRAME. The standalone S-FRAME model is 

provided in the example files. All beams and columns are modeled with linear elastic elements.  

The structure is subjected to lateral loads proportional to the first mode shape. Pushover analysis 

is conducted with a total of 50 steps.  
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12.7 INTERFACE NODES 

12.7.1 Definition   

The frame elements in S-FRAME are modeled with linear elastic frame elements. However, for 

the modeling of the beam-column joint subassemblies in VecTor2, which act as the substructure 

module, membrane elements are used. Therefore, the hybrid numerical model will be similar to 

that shown in Figure 12. 2. In the VecTor2 substructure, the length of the beam is taken as one 

meter from the column centreline, equivalent to 800mm of clear length. The same length of column 

is modeled in the substructure VecTor2 model. 

 

= 

 

+ 

 

(a)  (b)   (c) 

Figure 12. 2: Decomposition of the Example Structure into Analytical Substructures – (a) Integrated Numerical 

Model, (b) S-FRAME Integration Module, and (c) VecTor2 Substructure Module 

As discussed in Chapter 10, Section 10.7.1, rigid elements are used, as interface elements, to 

connect the beam element in S-FRAME to the continuum elements in VecTor2 (refer to Figure 

10. 5). This is carried out to avoid unrealistic stress concentrations in the VecTor2 numerica l 

model, at the interface nodes. 

12.7.2 Numbering Scheme   

The numbering scheme for the interface nodes is identical to that used in Chapter 10. 

12.8 EXAMPLE FILES 

Four main folders are included in the example files, including: 

1. The folder ‘Standalone S-FRAME’ contains the script for the standalone S-FRAME model, 

described in Section 12.6.  

2. The folder ‘V2 Sub’ contains the .fwx file of the VecTor2 model, which can be opened 

with FormWorks pre-processor.  
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3. The folder ‘SF’ contains the Integration module S-FRAME.TEL model file. 

4. The folder ‘SS’ contains the VecTor2 substructural model, as well as all the necessary files 

for the execution of hybrid simulation. 

For any general numerical S-FRAME – VecTo2 hybrid simulation, it is recommended that the 

original example folders be used, with updating certain files, as explained in the following. 

12.9 VECTOR2 SUBSTRUCTURE MODEL 

Figure 12. 3 illustrates a screenshot of the VecTor2 model, representing the beam-column joint 

subassemblies of the first story that act as the substructural model. The VecTor2 substructure 

module is identical to the substructure module used in Chapter 10, described in Section 10.9. 

 

Figure 12. 3: A Screenshot of the VecTor2 Substructure Module 

Upon completion of the VecTor2 model, the node numbers can be viewed in FormWorks. It is 

important to take note of the node number that is automatically assigned to each node in 

FormWorks. The node numbering may be changed at a later stage if required, however, in the 

present example, the automatically generated node numbers are kept. The default nodal numbers, 

as generated by VecTor2 are illustrated in Table 12. 1. 

12.10 S-FRAME INTEGRATION MODEL 

The numerical model of the S-FRAME integration module is provided in the example files. The 

assumptions as well as the analysis are similar to that described in Section 12.6. The only 

difference is that rigid elements and additional nodes are defined in the S-FRAME integrat ion 

module, at the interface node, similar to what was carried out in Chapter 10. Table 12. 1 

summarizes the interface nodal numbers, in S-FRAME and in VecTor2. 
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Table 12. 1: S-FRAME Nodal Numbers vs. VecTor2 Nodal Numbers, for Interface Nodes 

Interface A Interface B Interface C Interface D Interface E Interface F 

Num. 

in SF 

Num. 

in V2 

Num. 

in SF 

Num. 

in V2 

Num. 

in SF 

Num. 

in V2 

Num. 

in SF 

Num. 

in V2 

Num. 

in SF 

Num. 

in V2 

Num. 

in SF 

Num. 

in V2 

1 1 19 505 28 514 37 658 3 81 39 738 

2 3 20 506 29 515 38 660 4 82 40 739 

5 83 21 507 30 516 41 740 6 123 42 780 

7 124 22 508 31 517 43 781 8 164 44 821 

9 165 23 509 32 518 45 822 10 205 46 862 

11 206 24 510 33 519 47 863 12 246 48 903 

13 247 25 511 34 520 49 904 14 287 50 944 

15 288 26 512 35 521 51 945 16 328 52 985 

17 329 27 513 36 522 53 986 18 369 64 1026 

    Note: SF: S-FRAME model; V2: VecTor2 model. 

In order to link the S-FRAME integration module with the VecTor2 substructure module, a special 

constraint type, VecTor2 constraint as shown in Figure 12. 4, should be used. This constraint works 

similar to the SubStructure element developed in OpenSees to transfer data at the interface nodes. 

To accommodate the 2D VecTor2 model in the 3D S-FRAME model, it is also necessary to define 

the plane in which the VecTor2 model is located. To understand this, consider the beam-column 

joints in the VecTor2 model, transferred into the 3D model. It can be visualized that the beam-

column joints in VecTor2 will be oriented in the XZ-plane in the global coordinate system in S-

FRAME, as shown in Figure 12. 5 (a). The User Coordinate System Tool (UCS) should be used 

to define a local coordinate system, in S-FRAME, where the local x- and y- directions are aligned 

with the x- and y- directions in VecTor2, respectively, as shown in Figure 12. 5 (b). Finally, the 

defined coordinate system should be assigned to all interface nodes.  

 

Figure 12. 4: A Screenshot of the VecTor2 Constraint 
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In order to accurately transfer displacements and forces between the integration module and the 

substructure module, the interface nodes and their degrees of freedom (DOFs), defined in both 

numerical models, should be consistent. Specifically, the sequence of the interface nodes and 

DOFs in S-FRAME should be consistent with that defined in the substructure module. The 

mapping of the interface nodes in each module is shown in Table 12. 1. 

 

Figure 12. 5: Coordinate Systems as Defined in (a) S-FRAME, and (b) VecTor2 

12.11 HYBRID SIMULATION  

After copying the example files to the operating system, and completing the S-FRAME model, 

representing the integration module, and the VecTor2 model, representing the substructure 

module, using the steps outlined in each section the numerical hybrid simulation can be carried 

out. 

12.11.1 Requirements for the Substructure Module 

The following are required to have VecTor2 as a substructure module: 

1. In the folder containing the substructure VecTor2 model (folder ‘SS’ in the example files), 

delete all the output files generated from previous analyses. 

2. Place the ‘pardiso.lic’ file, that was created using the procedure explained in Section 

10.5.2, in the ‘SS’ folder. 
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3. Having the substructure VecTor2 model opened in FormWorks, generate the Structure File 

of the VecTor2 model. Keep the default name.  

4. Save the generated Structure File of the substructure VecTor2 model, in the ‘SS’ folder 

that contains the substructure model files. 

5. Having the VecTor2 substructure model opened in FormWorks, generate the job File of 

the VecTor2 model. Keep the default name.  

6. Save the generated job File of the substructure VecTor2 model, in the ‘SS’ folder that 

contains the substructure model files. Note that the job File can be used to modify the 

modeling assumptions, such as constitutive models, steps, etc. at a later stage if required. 

7. Ensure that the number of analysis steps that is specified for the VecTor2 model, in the job 

File, is greater than the total steps required for the analysis. 

8. In line 39 of the Job File, change the modeling format to 3.  

9. Open the ‘NICON.txt’ file, in the ‘SS’ folder. In the first row, the total number of DOFs of 

the interface nodes is specified. The current example has a total of 54 interface nodes. Each 

node has translational DOFs in X and Y directions. Therefore, the total number of active 

DOFs is specified as 108. 

 

Figure 12. 6: A Screenshot of the ‘NICON.txt’ File for the Example Structure 

10. In the proceeding lines, three numbers are specified. The first number is the nodal number 

of the interface node, as defined by VecTor2. The second and the third numbers specify 

the transfer of forces in the X and Y directions, respectively. For instance, ‘81 1 1’ means 

that at the interface node 81, force and displacements are communicated in the X and the 

Y directions from the integration module, to the substructural module. Figure 12. 6 shows 

a screenshot of the ‘NICON.txt’ file, for the example structure. Note that only a limited 

number of nodes are included in the Figure. 
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Important Note: the interface nodes must be specified with the same sequence, in the 

integration module and the substructure module, and in an ascending order. 

11. Ensure that the rest of the files, that were included with the original example are present in 

the ‘SS’ folder. These files are required for communication between the S-FRAME 

integration module and the VecTor2 substructure module. Figure 12. 7 shows an example 

of the files located in the ‘SS’ folder. 

 

Figure 12. 7: A Screenshot of the Typical Folder Containing the VecTor2 Substructure Module Files  

12.11.2 Requirements for the Integration Module 

The following are required to have S-FRAME as integration module: 

1. Place the S-FRAME integration model file, S-FRAME.TEL, in the ‘SF’ folder. 

2. Click the ‘Settings’ button on the top toolbar and select Preferences from the drop-list 

menu.   

3. From the Preferences window, select the Interface tab. The port number is specified in the 

Third Party Communication Port section at the bottom of this tab. 

4. In the Geometry shortcuts, right click the ‘Constraint Type’ button. From the resulting 

context menu, add a VecTor2 type constraint. 

5. In the Geometry shortcuts, right click the ‘User Coordinate System Tool’ button. Define 

the local plane for the VecTor2 model using the Three Points Method. 
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6. In the Geometry shortcuts, right click the ‘Joint Displacement Directions’ button. Select 

the VecTor2 constraint type defined in Step-4 and assign it to all interface nodes. The first 

interface node will be automatically defined as a master node while the other interface 

nodes become slave nodes. 

12.11.3 Hybrid Simulation Execution 

Upon completion of the above steps, the numerical hybrid simulation can be executed using the 

procedure outlined below: 

1. Run the ‘VT2-14JAN16.exe’ file, in the ‘SS’ folder. 

2. Specify the port number (i.e. 8090). 

3. After seeing the ‘waiting for connection’ message, execute the S-FRAME integrat ion 

module from the ‘SF’ folder. 

4. The simulation will start. 

12.12 RESULTS 

Figure 12. 8 shows the deformed shape and the crack pattern of the beam-column joint sub-

assemblies as the structure is deformed under the lateral loads. The performance of the beam-

column joints can conveniently be assessed in Augustus, in terms of other response parameters, 

such as reinforcement stresses, principal stresses, principal strains, crack width, etc. 

Figure 12. 9 shows the pushover curves obtained from the standalone S-FRAME model and the 

hybrid model, represented as the ratio of the lateral force in N, to the structural weight in kg. It can 

be seen that both models have the same initial responses up to a shear-weight ratio of 1.0 g. After 

that, significant strength degradation can be observed from the hybrid model due to the nonlinear 

behaviour of the beam-column joints. 

 

Figure 12. 8: Deformed Shape and Crack Pattern of the Beam-Column Joint Sub-Assembly, As Obtained from 

Augustus 
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Figure 12. 9: Structure Lateral Force-Deformation Response 
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APPENDIX A. MODELLING OF A SHEAR-CRITICAL RC 

BEAM IN VECTOR2 

A.1   INTRODUCTION 

In this Appendix, the capabilities of the VecTor program [Vecchio, 2017] suite are illustrated 

through modeling a previously tested specimen, using the program VecTor2 [Wong et al., 2013]. 

A.2 EXAMPLE TEST SPECIMEN 

The example test specimen is a shear-critical reinforced concrete test specimen [Vecchio and 

Shim, 2004], shown in Figure A. 1. The material properties are shown in Table A. 1 and Table A. 

2. 

     

Figure A. 1: Cross section and elevation details of OA1 beam [18] (dimensions in millimeters) 

Table A. 1: Concrete Material Properties of Beam OA1 

f'c ɛo Ec fsp Max Agg. Size 

(MPa) (× 10-3) (MPa) (MPa) (mm) 

22.6 1.6 36,500 2.37 20 

Table A. 2: Reinforcement Material Properties of Beam OA1 

Bar Size 
Diameter Area fy fu Es ɛsh ɛu 

(mm) (mm2) (MPa) (MPa) (MPa) (× 10-3) (× 10-3) 

25M 25.2 500 445 680 220,000 8.5 216 

30M 29.9 700 436 700 200,000 11.4 175 

 

A.3 EXPERIMENTAL RESULTS 

The results of the experiment showed a brittle shear failure. Further, shear cracks were observed 

in the test specimen. 
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(a) (b) 

Figure A. 2: Results of the test Specimen – (a) Force-Displacement Response, (b) Crack Pattern 

A.4   VECTOR2 MODEL 

The beam specimen is modeled in VecTor2. The VecTor2 model is included in the example files. 

The steps required for modeling the beam specimen in VecTor2 are provided:  

1. Define materials (i.e. concrete material, steel material, bearing material). 

2. Create finite element mesh (i.e. concrete regions, longitudinal reinforcements, constraint 

point). 

3. Define support restraint, as required. 

4. Define loads. 

5. Select analysis options. 

Shown in Figure A. 3 is a screenshot of FormWorks visual interface identifying the material 

regions, the longitudinal reinforcements, and the constraint point, as defined in VecTor2. Figure 

A. 4 shows a screenshot of the finalized VecTor2 model, as shown in FormWorks pre-processor. 

 
Figure A. 3: Concrete regions, longitudinal reinforcements, and constraint point in VecTro2 model   
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Figure A. 4: Screenshot of the VecTor2 Model in FormWorks User Interface   

A.5 RESULT COMPARISON 

Figure A. 5 shows a comparison between the results obtained from the VecTor2 model, and the 

experiment, in terms of the force-displacement response. 

 

 

Figure A. 5: Comparison between the Experiment and the Model in terms of Force-Displacements 
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Figure A.6 shows a comparison between the results, in terms of the crack pattern. 

  

(a) (b) 

Figure A. 6: Comparison between the Experiment and the Numerical Model in terms of Crack Patterns – (a) 

Experiment, (b) VecTor2 

As can be observed, the VecTor2 model was able to capture the brittle shear behavior, that was 

observed during the experiment.  

  


